1 | //===- CXXInheritance.h - C++ Inheritance -----------------------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides routines that help analyzing C++ inheritance hierarchies. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H |
14 | #define LLVM_CLANG_AST_CXXINHERITANCE_H |
15 | |
16 | #include "clang/AST/DeclBase.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/DeclarationName.h" |
19 | #include "clang/AST/Type.h" |
20 | #include "clang/AST/TypeOrdering.h" |
21 | #include "clang/Basic/Specifiers.h" |
22 | #include "llvm/ADT/DenseMap.h" |
23 | #include "llvm/ADT/DenseSet.h" |
24 | #include "llvm/ADT/MapVector.h" |
25 | #include "llvm/ADT/SmallSet.h" |
26 | #include "llvm/ADT/SmallVector.h" |
27 | #include "llvm/ADT/iterator_range.h" |
28 | #include <list> |
29 | #include <memory> |
30 | #include <utility> |
31 | |
32 | namespace clang { |
33 | |
34 | class ASTContext; |
35 | class NamedDecl; |
36 | |
37 | /// Represents an element in a path from a derived class to a |
38 | /// base class. |
39 | /// |
40 | /// Each step in the path references the link from a |
41 | /// derived class to one of its direct base classes, along with a |
42 | /// base "number" that identifies which base subobject of the |
43 | /// original derived class we are referencing. |
44 | struct CXXBasePathElement { |
45 | /// The base specifier that states the link from a derived |
46 | /// class to a base class, which will be followed by this base |
47 | /// path element. |
48 | const CXXBaseSpecifier *Base; |
49 | |
50 | /// The record decl of the class that the base is a base of. |
51 | const CXXRecordDecl *Class; |
52 | |
53 | /// Identifies which base class subobject (of type |
54 | /// \c Base->getType()) this base path element refers to. |
55 | /// |
56 | /// This value is only valid if \c !Base->isVirtual(), because there |
57 | /// is no base numbering for the zero or one virtual bases of a |
58 | /// given type. |
59 | int SubobjectNumber; |
60 | }; |
61 | |
62 | /// Represents a path from a specific derived class |
63 | /// (which is not represented as part of the path) to a particular |
64 | /// (direct or indirect) base class subobject. |
65 | /// |
66 | /// Individual elements in the path are described by the \c CXXBasePathElement |
67 | /// structure, which captures both the link from a derived class to one of its |
68 | /// direct bases and identification describing which base class |
69 | /// subobject is being used. |
70 | class CXXBasePath : public SmallVector<CXXBasePathElement, 4> { |
71 | public: |
72 | /// The access along this inheritance path. This is only |
73 | /// calculated when recording paths. AS_none is a special value |
74 | /// used to indicate a path which permits no legal access. |
75 | AccessSpecifier Access = AS_public; |
76 | |
77 | CXXBasePath() = default; |
78 | |
79 | /// The set of declarations found inside this base class |
80 | /// subobject. |
81 | DeclContext::lookup_result Decls; |
82 | |
83 | void clear() { |
84 | SmallVectorImpl<CXXBasePathElement>::clear(); |
85 | Access = AS_public; |
86 | } |
87 | }; |
88 | |
89 | /// BasePaths - Represents the set of paths from a derived class to |
90 | /// one of its (direct or indirect) bases. For example, given the |
91 | /// following class hierarchy: |
92 | /// |
93 | /// @code |
94 | /// class A { }; |
95 | /// class B : public A { }; |
96 | /// class C : public A { }; |
97 | /// class D : public B, public C{ }; |
98 | /// @endcode |
99 | /// |
100 | /// There are two potential BasePaths to represent paths from D to a |
101 | /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0) |
102 | /// and another is (D,0)->(C,0)->(A,1). These two paths actually |
103 | /// refer to two different base class subobjects of the same type, |
104 | /// so the BasePaths object refers to an ambiguous path. On the |
105 | /// other hand, consider the following class hierarchy: |
106 | /// |
107 | /// @code |
108 | /// class A { }; |
109 | /// class B : public virtual A { }; |
110 | /// class C : public virtual A { }; |
111 | /// class D : public B, public C{ }; |
112 | /// @endcode |
113 | /// |
114 | /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0) |
115 | /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them |
116 | /// refer to the same base class subobject of type A (the virtual |
117 | /// one), there is no ambiguity. |
118 | class CXXBasePaths { |
119 | friend class CXXRecordDecl; |
120 | |
121 | /// The type from which this search originated. |
122 | CXXRecordDecl *Origin = nullptr; |
123 | |
124 | /// Paths - The actual set of paths that can be taken from the |
125 | /// derived class to the same base class. |
126 | std::list<CXXBasePath> Paths; |
127 | |
128 | /// ClassSubobjects - Records the class subobjects for each class |
129 | /// type that we've seen. The first element IsVirtBase says |
130 | /// whether we found a path to a virtual base for that class type, |
131 | /// while NumberOfNonVirtBases contains the number of non-virtual base |
132 | /// class subobjects for that class type. The key of the map is |
133 | /// the cv-unqualified canonical type of the base class subobject. |
134 | struct IsVirtBaseAndNumberNonVirtBases { |
135 | unsigned IsVirtBase : 1; |
136 | unsigned NumberOfNonVirtBases : 31; |
137 | }; |
138 | llvm::SmallDenseMap<QualType, IsVirtBaseAndNumberNonVirtBases, 8> |
139 | ClassSubobjects; |
140 | |
141 | /// VisitedDependentRecords - Records the dependent records that have been |
142 | /// already visited. |
143 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedDependentRecords; |
144 | |
145 | /// DetectedVirtual - The base class that is virtual. |
146 | const RecordType *DetectedVirtual = nullptr; |
147 | |
148 | /// ScratchPath - A BasePath that is used by Sema::lookupInBases |
149 | /// to help build the set of paths. |
150 | CXXBasePath ScratchPath; |
151 | |
152 | /// Array of the declarations that have been found. This |
153 | /// array is constructed only if needed, e.g., to iterate over the |
154 | /// results within LookupResult. |
155 | std::unique_ptr<NamedDecl *[]> DeclsFound; |
156 | unsigned NumDeclsFound = 0; |
157 | |
158 | /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find |
159 | /// ambiguous paths while it is looking for a path from a derived |
160 | /// type to a base type. |
161 | bool FindAmbiguities; |
162 | |
163 | /// RecordPaths - Whether Sema::IsDerivedFrom should record paths |
164 | /// while it is determining whether there are paths from a derived |
165 | /// type to a base type. |
166 | bool RecordPaths; |
167 | |
168 | /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search |
169 | /// if it finds a path that goes across a virtual base. The virtual class |
170 | /// is also recorded. |
171 | bool DetectVirtual; |
172 | |
173 | void ComputeDeclsFound(); |
174 | |
175 | bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record, |
176 | CXXRecordDecl::BaseMatchesCallback BaseMatches, |
177 | bool LookupInDependent = false); |
178 | |
179 | public: |
180 | using paths_iterator = std::list<CXXBasePath>::iterator; |
181 | using const_paths_iterator = std::list<CXXBasePath>::const_iterator; |
182 | using decl_iterator = NamedDecl **; |
183 | |
184 | /// BasePaths - Construct a new BasePaths structure to record the |
185 | /// paths for a derived-to-base search. |
186 | explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true, |
187 | bool DetectVirtual = true) |
188 | : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths), |
189 | DetectVirtual(DetectVirtual) {} |
190 | |
191 | paths_iterator begin() { return Paths.begin(); } |
192 | paths_iterator end() { return Paths.end(); } |
193 | const_paths_iterator begin() const { return Paths.begin(); } |
194 | const_paths_iterator end() const { return Paths.end(); } |
195 | |
196 | CXXBasePath& front() { return Paths.front(); } |
197 | const CXXBasePath& front() const { return Paths.front(); } |
198 | |
199 | using decl_range = llvm::iterator_range<decl_iterator>; |
200 | |
201 | decl_range found_decls(); |
202 | |
203 | /// Determine whether the path from the most-derived type to the |
204 | /// given base type is ambiguous (i.e., it refers to multiple subobjects of |
205 | /// the same base type). |
206 | bool isAmbiguous(CanQualType BaseType); |
207 | |
208 | /// Whether we are finding multiple paths to detect ambiguities. |
209 | bool isFindingAmbiguities() const { return FindAmbiguities; } |
210 | |
211 | /// Whether we are recording paths. |
212 | bool isRecordingPaths() const { return RecordPaths; } |
213 | |
214 | /// Specify whether we should be recording paths or not. |
215 | void setRecordingPaths(bool RP) { RecordPaths = RP; } |
216 | |
217 | /// Whether we are detecting virtual bases. |
218 | bool isDetectingVirtual() const { return DetectVirtual; } |
219 | |
220 | /// The virtual base discovered on the path (if we are merely |
221 | /// detecting virtuals). |
222 | const RecordType* getDetectedVirtual() const { |
223 | return DetectedVirtual; |
224 | } |
225 | |
226 | /// Retrieve the type from which this base-paths search |
227 | /// began |
228 | CXXRecordDecl *getOrigin() const { return Origin; } |
229 | void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; } |
230 | |
231 | /// Clear the base-paths results. |
232 | void clear(); |
233 | |
234 | /// Swap this data structure's contents with another CXXBasePaths |
235 | /// object. |
236 | void swap(CXXBasePaths &Other); |
237 | }; |
238 | |
239 | /// Uniquely identifies a virtual method within a class |
240 | /// hierarchy by the method itself and a class subobject number. |
241 | struct UniqueVirtualMethod { |
242 | /// The overriding virtual method. |
243 | CXXMethodDecl *Method = nullptr; |
244 | |
245 | /// The subobject in which the overriding virtual method |
246 | /// resides. |
247 | unsigned Subobject = 0; |
248 | |
249 | /// The virtual base class subobject of which this overridden |
250 | /// virtual method is a part. Note that this records the closest |
251 | /// derived virtual base class subobject. |
252 | const CXXRecordDecl *InVirtualSubobject = nullptr; |
253 | |
254 | UniqueVirtualMethod() = default; |
255 | |
256 | UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject, |
257 | const CXXRecordDecl *InVirtualSubobject) |
258 | : Method(Method), Subobject(Subobject), |
259 | InVirtualSubobject(InVirtualSubobject) {} |
260 | |
261 | friend bool operator==(const UniqueVirtualMethod &X, |
262 | const UniqueVirtualMethod &Y) { |
263 | return X.Method == Y.Method && X.Subobject == Y.Subobject && |
264 | X.InVirtualSubobject == Y.InVirtualSubobject; |
265 | } |
266 | |
267 | friend bool operator!=(const UniqueVirtualMethod &X, |
268 | const UniqueVirtualMethod &Y) { |
269 | return !(X == Y); |
270 | } |
271 | }; |
272 | |
273 | /// The set of methods that override a given virtual method in |
274 | /// each subobject where it occurs. |
275 | /// |
276 | /// The first part of the pair is the subobject in which the |
277 | /// overridden virtual function occurs, while the second part of the |
278 | /// pair is the virtual method that overrides it (including the |
279 | /// subobject in which that virtual function occurs). |
280 | class OverridingMethods { |
281 | using ValuesT = SmallVector<UniqueVirtualMethod, 4>; |
282 | using MapType = llvm::MapVector<unsigned, ValuesT>; |
283 | |
284 | MapType Overrides; |
285 | |
286 | public: |
287 | // Iterate over the set of subobjects that have overriding methods. |
288 | using iterator = MapType::iterator; |
289 | using const_iterator = MapType::const_iterator; |
290 | |
291 | iterator begin() { return Overrides.begin(); } |
292 | const_iterator begin() const { return Overrides.begin(); } |
293 | iterator end() { return Overrides.end(); } |
294 | const_iterator end() const { return Overrides.end(); } |
295 | unsigned size() const { return Overrides.size(); } |
296 | |
297 | // Iterate over the set of overriding virtual methods in a given |
298 | // subobject. |
299 | using overriding_iterator = |
300 | SmallVectorImpl<UniqueVirtualMethod>::iterator; |
301 | using overriding_const_iterator = |
302 | SmallVectorImpl<UniqueVirtualMethod>::const_iterator; |
303 | |
304 | // Add a new overriding method for a particular subobject. |
305 | void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding); |
306 | |
307 | // Add all of the overriding methods from "other" into overrides for |
308 | // this method. Used when merging the overrides from multiple base |
309 | // class subobjects. |
310 | void add(const OverridingMethods &Other); |
311 | |
312 | // Replace all overriding virtual methods in all subobjects with the |
313 | // given virtual method. |
314 | void replaceAll(UniqueVirtualMethod Overriding); |
315 | }; |
316 | |
317 | /// A mapping from each virtual member function to its set of |
318 | /// final overriders. |
319 | /// |
320 | /// Within a class hierarchy for a given derived class, each virtual |
321 | /// member function in that hierarchy has one or more "final |
322 | /// overriders" (C++ [class.virtual]p2). A final overrider for a |
323 | /// virtual function "f" is the virtual function that will actually be |
324 | /// invoked when dispatching a call to "f" through the |
325 | /// vtable. Well-formed classes have a single final overrider for each |
326 | /// virtual function; in abstract classes, the final overrider for at |
327 | /// least one virtual function is a pure virtual function. Due to |
328 | /// multiple, virtual inheritance, it is possible for a class to have |
329 | /// more than one final overrider. Athough this is an error (per C++ |
330 | /// [class.virtual]p2), it is not considered an error here: the final |
331 | /// overrider map can represent multiple final overriders for a |
332 | /// method, and it is up to the client to determine whether they are |
333 | /// problem. For example, the following class \c D has two final |
334 | /// overriders for the virtual function \c A::f(), one in \c C and one |
335 | /// in \c D: |
336 | /// |
337 | /// \code |
338 | /// struct A { virtual void f(); }; |
339 | /// struct B : virtual A { virtual void f(); }; |
340 | /// struct C : virtual A { virtual void f(); }; |
341 | /// struct D : B, C { }; |
342 | /// \endcode |
343 | /// |
344 | /// This data structure contains a mapping from every virtual |
345 | /// function *that does not override an existing virtual function* and |
346 | /// in every subobject where that virtual function occurs to the set |
347 | /// of virtual functions that override it. Thus, the same virtual |
348 | /// function \c A::f can actually occur in multiple subobjects of type |
349 | /// \c A due to multiple inheritance, and may be overridden by |
350 | /// different virtual functions in each, as in the following example: |
351 | /// |
352 | /// \code |
353 | /// struct A { virtual void f(); }; |
354 | /// struct B : A { virtual void f(); }; |
355 | /// struct C : A { virtual void f(); }; |
356 | /// struct D : B, C { }; |
357 | /// \endcode |
358 | /// |
359 | /// Unlike in the previous example, where the virtual functions \c |
360 | /// B::f and \c C::f both overrode \c A::f in the same subobject of |
361 | /// type \c A, in this example the two virtual functions both override |
362 | /// \c A::f but in *different* subobjects of type A. This is |
363 | /// represented by numbering the subobjects in which the overridden |
364 | /// and the overriding virtual member functions are located. Subobject |
365 | /// 0 represents the virtual base class subobject of that type, while |
366 | /// subobject numbers greater than 0 refer to non-virtual base class |
367 | /// subobjects of that type. |
368 | class CXXFinalOverriderMap |
369 | : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> {}; |
370 | |
371 | /// A set of all the primary bases for a class. |
372 | class CXXIndirectPrimaryBaseSet |
373 | : public llvm::SmallSet<const CXXRecordDecl*, 32> {}; |
374 | |
375 | } // namespace clang |
376 | |
377 | #endif // LLVM_CLANG_AST_CXXINHERITANCE_H |
378 |