Clang Project

clang_source_code/lib/Sema/AnalysisBasedWarnings.cpp
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines analysis_warnings::[Policy,Executor].
10// Together they are used by Sema to issue warnings based on inexpensive
11// static analysis algorithms in libAnalysis.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/AnalysisBasedWarnings.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/EvaluatedExprVisitor.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/ParentMap.h"
22#include "clang/AST/RecursiveASTVisitor.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
27#include "clang/Analysis/Analyses/Consumed.h"
28#include "clang/Analysis/Analyses/ReachableCode.h"
29#include "clang/Analysis/Analyses/ThreadSafety.h"
30#include "clang/Analysis/Analyses/UninitializedValues.h"
31#include "clang/Analysis/AnalysisDeclContext.h"
32#include "clang/Analysis/CFG.h"
33#include "clang/Analysis/CFGStmtMap.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "llvm/ADT/BitVector.h"
40#include "llvm/ADT/MapVector.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringRef.h"
44#include "llvm/Support/Casting.h"
45#include <algorithm>
46#include <deque>
47#include <iterator>
48
49using namespace clang;
50
51//===----------------------------------------------------------------------===//
52// Unreachable code analysis.
53//===----------------------------------------------------------------------===//
54
55namespace {
56  class UnreachableCodeHandler : public reachable_code::Callback {
57    Sema &S;
58    SourceRange PreviousSilenceableCondVal;
59
60  public:
61    UnreachableCodeHandler(Sema &s) : S(s) {}
62
63    void HandleUnreachable(reachable_code::UnreachableKind UK,
64                           SourceLocation L,
65                           SourceRange SilenceableCondVal,
66                           SourceRange R1,
67                           SourceRange R2) override {
68      // Avoid reporting multiple unreachable code diagnostics that are
69      // triggered by the same conditional value.
70      if (PreviousSilenceableCondVal.isValid() &&
71          SilenceableCondVal.isValid() &&
72          PreviousSilenceableCondVal == SilenceableCondVal)
73        return;
74      PreviousSilenceableCondVal = SilenceableCondVal;
75
76      unsigned diag = diag::warn_unreachable;
77      switch (UK) {
78        case reachable_code::UK_Break:
79          diag = diag::warn_unreachable_break;
80          break;
81        case reachable_code::UK_Return:
82          diag = diag::warn_unreachable_return;
83          break;
84        case reachable_code::UK_Loop_Increment:
85          diag = diag::warn_unreachable_loop_increment;
86          break;
87        case reachable_code::UK_Other:
88          break;
89      }
90
91      S.Diag(Ldiag) << R1 << R2;
92
93      SourceLocation Open = SilenceableCondVal.getBegin();
94      if (Open.isValid()) {
95        SourceLocation Close = SilenceableCondVal.getEnd();
96        Close = S.getLocForEndOfToken(Close);
97        if (Close.isValid()) {
98          S.Diag(Open, diag::note_unreachable_silence)
99            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
100            << FixItHint::CreateInsertion(Close, ")");
101        }
102      }
103    }
104  };
105// anonymous namespace
106
107/// CheckUnreachable - Check for unreachable code.
108static void CheckUnreachable(Sema &SAnalysisDeclContext &AC) {
109  // As a heuristic prune all diagnostics not in the main file.  Currently
110  // the majority of warnings in headers are false positives.  These
111  // are largely caused by configuration state, e.g. preprocessor
112  // defined code, etc.
113  //
114  // Note that this is also a performance optimization.  Analyzing
115  // headers many times can be expensive.
116  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
117    return;
118
119  UnreachableCodeHandler UC(S);
120  reachable_code::FindUnreachableCode(ACS.getPreprocessor()UC);
121}
122
123namespace {
124/// Warn on logical operator errors in CFGBuilder
125class LogicalErrorHandler : public CFGCallback {
126  Sema &S;
127
128public:
129  LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
130
131  static bool HasMacroID(const Expr *E) {
132    if (E->getExprLoc().isMacroID())
133      return true;
134
135    // Recurse to children.
136    for (const Stmt *SubStmt : E->children())
137      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
138        if (HasMacroID(SubExpr))
139          return true;
140
141    return false;
142  }
143
144  void compareAlwaysTrue(const BinaryOperator *Bbool isAlwaysTrue) override {
145    if (HasMacroID(B))
146      return;
147
148    SourceRange DiagRange = B->getSourceRange();
149    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
150        << DiagRange << isAlwaysTrue;
151  }
152
153  void compareBitwiseEquality(const BinaryOperator *B,
154                              bool isAlwaysTrue) override {
155    if (HasMacroID(B))
156      return;
157
158    SourceRange DiagRange = B->getSourceRange();
159    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
160        << DiagRange << isAlwaysTrue;
161  }
162};
163// anonymous namespace
164
165//===----------------------------------------------------------------------===//
166// Check for infinite self-recursion in functions
167//===----------------------------------------------------------------------===//
168
169// Returns true if the function is called anywhere within the CFGBlock.
170// For member functions, the additional condition of being call from the
171// this pointer is required.
172static bool hasRecursiveCallInPath(const FunctionDecl *FDCFGBlock &Block) {
173  // Process all the Stmt's in this block to find any calls to FD.
174  for (const auto &B : Block) {
175    if (B.getKind() != CFGElement::Statement)
176      continue;
177
178    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
179    if (!CE || !CE->getCalleeDecl() ||
180        CE->getCalleeDecl()->getCanonicalDecl() != FD)
181      continue;
182
183    // Skip function calls which are qualified with a templated class.
184    if (const DeclRefExpr *DRE =
185            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
186      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
187        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
188            isa<TemplateSpecializationType>(NNS->getAsType())) {
189          continue;
190        }
191      }
192    }
193
194    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
195    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
196        !MCE->getMethodDecl()->isVirtual())
197      return true;
198  }
199  return false;
200}
201
202// Returns true if every path from the entry block passes through a call to FD.
203static bool checkForRecursiveFunctionCall(const FunctionDecl *FDCFG *cfg) {
204  llvm::SmallPtrSet<CFGBlock *, 16> Visited;
205  llvm::SmallVector<CFGBlock *, 16WorkList;
206  // Keep track of whether we found at least one recursive path.
207  bool foundRecursion = false;
208
209  const unsigned ExitID = cfg->getExit().getBlockID();
210
211  // Seed the work list with the entry block.
212  WorkList.push_back(&cfg->getEntry());
213
214  while (!WorkList.empty()) {
215    CFGBlock *Block = WorkList.pop_back_val();
216
217    for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
218      if (CFGBlock *SuccBlock = *I) {
219        if (!Visited.insert(SuccBlock).second)
220          continue;
221
222        // Found a path to the exit node without a recursive call.
223        if (ExitID == SuccBlock->getBlockID())
224          return false;
225
226        // If the successor block contains a recursive call, end analysis there.
227        if (hasRecursiveCallInPath(FD, *SuccBlock)) {
228          foundRecursion = true;
229          continue;
230        }
231
232        WorkList.push_back(SuccBlock);
233      }
234    }
235  }
236  return foundRecursion;
237}
238
239static void checkRecursiveFunction(Sema &Sconst FunctionDecl *FD,
240                                   const Stmt *BodyAnalysisDeclContext &AC) {
241  FD = FD->getCanonicalDecl();
242
243  // Only run on non-templated functions and non-templated members of
244  // templated classes.
245  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
246      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
247    return;
248
249  CFG *cfg = AC.getCFG();
250  if (!cfgreturn;
251
252  // If the exit block is unreachable, skip processing the function.
253  if (cfg->getExit().pred_empty())
254    return;
255
256  // Emit diagnostic if a recursive function call is detected for all paths.
257  if (checkForRecursiveFunctionCall(FD, cfg))
258    S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
259}
260
261//===----------------------------------------------------------------------===//
262// Check for throw in a non-throwing function.
263//===----------------------------------------------------------------------===//
264
265/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
266/// can reach ExitBlock.
267static bool throwEscapes(Sema &Sconst CXXThrowExpr *ECFGBlock &ThrowBlock,
268                         CFG *Body) {
269  SmallVector<CFGBlock *, 16Stack;
270  llvm::BitVector Queued(Body->getNumBlockIDs());
271
272  Stack.push_back(&ThrowBlock);
273  Queued[ThrowBlock.getBlockID()] = true;
274
275  while (!Stack.empty()) {
276    CFGBlock &UnwindBlock = *Stack.back();
277    Stack.pop_back();
278
279    for (auto &Succ : UnwindBlock.succs()) {
280      if (!Succ.isReachable() || Queued[Succ->getBlockID()])
281        continue;
282
283      if (Succ->getBlockID() == Body->getExit().getBlockID())
284        return true;
285
286      if (auto *Catch =
287              dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
288        QualType Caught = Catch->getCaughtType();
289        if (Caught.isNull() || // catch (...) catches everything
290            !E->getSubExpr() || // throw; is considered cuaght by any handler
291            S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
292          // Exception doesn't escape via this path.
293          break;
294      } else {
295        Stack.push_back(Succ);
296        Queued[Succ->getBlockID()] = true;
297      }
298    }
299  }
300
301  return false;
302}
303
304static void visitReachableThrows(
305    CFG *BodyCFG,
306    llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
307  llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
308  clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
309  for (CFGBlock *B : *BodyCFG) {
310    if (!Reachable[B->getBlockID()])
311      continue;
312    for (CFGElement &E : *B) {
313      Optional<CFGStmtS = E.getAs<CFGStmt>();
314      if (!S)
315        continue;
316      if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
317        Visit(Throw, *B);
318    }
319  }
320}
321
322static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &SSourceLocation OpLoc,
323                                                 const FunctionDecl *FD) {
324  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
325      FD->getTypeSourceInfo()) {
326    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
327    if (S.getLangOpts().CPlusPlus11 &&
328        (isa<CXXDestructorDecl>(FD) ||
329         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
330         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
331      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
332                                         getAs<FunctionProtoType>())
333        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
334            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
335            << FD->getExceptionSpecSourceRange();
336    } else
337      S.Diag(FD->getLocation(), diag::note_throw_in_function)
338          << FD->getExceptionSpecSourceRange();
339  }
340}
341
342static void checkThrowInNonThrowingFunc(Sema &Sconst FunctionDecl *FD,
343                                        AnalysisDeclContext &AC) {
344  CFG *BodyCFG = AC.getCFG();
345  if (!BodyCFG)
346    return;
347  if (BodyCFG->getExit().pred_empty())
348    return;
349  visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *ThrowCFGBlock &Block) {
350    if (throwEscapes(SThrowBlockBodyCFG))
351      EmitDiagForCXXThrowInNonThrowingFunc(SThrow->getThrowLoc(), FD);
352  });
353}
354
355static bool isNoexcept(const FunctionDecl *FD) {
356  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
357  if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
358    return true;
359  return false;
360}
361
362//===----------------------------------------------------------------------===//
363// Check for missing return value.
364//===----------------------------------------------------------------------===//
365
366enum ControlFlowKind {
367  UnknownFallThrough,
368  NeverFallThrough,
369  MaybeFallThrough,
370  AlwaysFallThrough,
371  NeverFallThroughOrReturn
372};
373
374/// CheckFallThrough - Check that we don't fall off the end of a
375/// Statement that should return a value.
376///
377/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
378/// MaybeFallThrough iff we might or might not fall off the end,
379/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
380/// return.  We assume NeverFallThrough iff we never fall off the end of the
381/// statement but we may return.  We assume that functions not marked noreturn
382/// will return.
383static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
384  CFG *cfg = AC.getCFG();
385  if (!cfgreturn UnknownFallThrough;
386
387  // The CFG leaves in dead things, and we don't want the dead code paths to
388  // confuse us, so we mark all live things first.
389  llvm::BitVector live(cfg->getNumBlockIDs());
390  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
391                                                          live);
392
393  bool AddEHEdges = AC.getAddEHEdges();
394  if (!AddEHEdges && count != cfg->getNumBlockIDs())
395    // When there are things remaining dead, and we didn't add EH edges
396    // from CallExprs to the catch clauses, we have to go back and
397    // mark them as live.
398    for (const auto *B : *cfg) {
399      if (!live[B->getBlockID()]) {
400        if (B->pred_begin() == B->pred_end()) {
401          if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
402            // When not adding EH edges from calls, catch clauses
403            // can otherwise seem dead.  Avoid noting them as dead.
404            count += reachable_code::ScanReachableFromBlock(B, live);
405          continue;
406        }
407      }
408    }
409
410  // Now we know what is live, we check the live precessors of the exit block
411  // and look for fall through paths, being careful to ignore normal returns,
412  // and exceptional paths.
413  bool HasLiveReturn = false;
414  bool HasFakeEdge = false;
415  bool HasPlainEdge = false;
416  bool HasAbnormalEdge = false;
417
418  // Ignore default cases that aren't likely to be reachable because all
419  // enums in a switch(X) have explicit case statements.
420  CFGBlock::FilterOptions FO;
421  FO.IgnoreDefaultsWithCoveredEnums = 1;
422
423  for (CFGBlock::filtered_pred_iterator I =
424           cfg->getExit().filtered_pred_start_end(FO);
425       I.hasMore(); ++I) {
426    const CFGBlock &B = **I;
427    if (!live[B.getBlockID()])
428      continue;
429
430    // Skip blocks which contain an element marked as no-return. They don't
431    // represent actually viable edges into the exit block, so mark them as
432    // abnormal.
433    if (B.hasNoReturnElement()) {
434      HasAbnormalEdge = true;
435      continue;
436    }
437
438    // Destructors can appear after the 'return' in the CFG.  This is
439    // normal.  We need to look pass the destructors for the return
440    // statement (if it exists).
441    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
442
443    for ( ; ri != re ; ++ri)
444      if (ri->getAs<CFGStmt>())
445        break;
446
447    // No more CFGElements in the block?
448    if (ri == re) {
449      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
450        HasAbnormalEdge = true;
451        continue;
452      }
453      // A labeled empty statement, or the entry block...
454      HasPlainEdge = true;
455      continue;
456    }
457
458    CFGStmt CS = ri->castAs<CFGStmt>();
459    const Stmt *S = CS.getStmt();
460    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
461      HasLiveReturn = true;
462      continue;
463    }
464    if (isa<ObjCAtThrowStmt>(S)) {
465      HasFakeEdge = true;
466      continue;
467    }
468    if (isa<CXXThrowExpr>(S)) {
469      HasFakeEdge = true;
470      continue;
471    }
472    if (isa<MSAsmStmt>(S)) {
473      // TODO: Verify this is correct.
474      HasFakeEdge = true;
475      HasLiveReturn = true;
476      continue;
477    }
478    if (isa<CXXTryStmt>(S)) {
479      HasAbnormalEdge = true;
480      continue;
481    }
482    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
483        == B.succ_end()) {
484      HasAbnormalEdge = true;
485      continue;
486    }
487
488    HasPlainEdge = true;
489  }
490  if (!HasPlainEdge) {
491    if (HasLiveReturn)
492      return NeverFallThrough;
493    return NeverFallThroughOrReturn;
494  }
495  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
496    return MaybeFallThrough;
497  // This says AlwaysFallThrough for calls to functions that are not marked
498  // noreturn, that don't return.  If people would like this warning to be more
499  // accurate, such functions should be marked as noreturn.
500  return AlwaysFallThrough;
501}
502
503namespace {
504
505struct CheckFallThroughDiagnostics {
506  unsigned diag_MaybeFallThrough_HasNoReturn;
507  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
508  unsigned diag_AlwaysFallThrough_HasNoReturn;
509  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
510  unsigned diag_NeverFallThroughOrReturn;
511  enum { FunctionBlockLambdaCoroutine } funMode;
512  SourceLocation FuncLoc;
513
514  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
515    CheckFallThroughDiagnostics D;
516    D.FuncLoc = Func->getLocation();
517    D.diag_MaybeFallThrough_HasNoReturn =
518      diag::warn_falloff_noreturn_function;
519    D.diag_MaybeFallThrough_ReturnsNonVoid =
520      diag::warn_maybe_falloff_nonvoid_function;
521    D.diag_AlwaysFallThrough_HasNoReturn =
522      diag::warn_falloff_noreturn_function;
523    D.diag_AlwaysFallThrough_ReturnsNonVoid =
524      diag::warn_falloff_nonvoid_function;
525
526    // Don't suggest that virtual functions be marked "noreturn", since they
527    // might be overridden by non-noreturn functions.
528    bool isVirtualMethod = false;
529    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
530      isVirtualMethod = Method->isVirtual();
531
532    // Don't suggest that template instantiations be marked "noreturn"
533    bool isTemplateInstantiation = false;
534    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
535      isTemplateInstantiation = Function->isTemplateInstantiation();
536
537    if (!isVirtualMethod && !isTemplateInstantiation)
538      D.diag_NeverFallThroughOrReturn =
539        diag::warn_suggest_noreturn_function;
540    else
541      D.diag_NeverFallThroughOrReturn = 0;
542
543    D.funMode = Function;
544    return D;
545  }
546
547  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
548    CheckFallThroughDiagnostics D;
549    D.FuncLoc = Func->getLocation();
550    D.diag_MaybeFallThrough_HasNoReturn = 0;
551    D.diag_MaybeFallThrough_ReturnsNonVoid =
552        diag::warn_maybe_falloff_nonvoid_coroutine;
553    D.diag_AlwaysFallThrough_HasNoReturn = 0;
554    D.diag_AlwaysFallThrough_ReturnsNonVoid =
555        diag::warn_falloff_nonvoid_coroutine;
556    D.funMode = Coroutine;
557    return D;
558  }
559
560  static CheckFallThroughDiagnostics MakeForBlock() {
561    CheckFallThroughDiagnostics D;
562    D.diag_MaybeFallThrough_HasNoReturn =
563      diag::err_noreturn_block_has_return_expr;
564    D.diag_MaybeFallThrough_ReturnsNonVoid =
565      diag::err_maybe_falloff_nonvoid_block;
566    D.diag_AlwaysFallThrough_HasNoReturn =
567      diag::err_noreturn_block_has_return_expr;
568    D.diag_AlwaysFallThrough_ReturnsNonVoid =
569      diag::err_falloff_nonvoid_block;
570    D.diag_NeverFallThroughOrReturn = 0;
571    D.funMode = Block;
572    return D;
573  }
574
575  static CheckFallThroughDiagnostics MakeForLambda() {
576    CheckFallThroughDiagnostics D;
577    D.diag_MaybeFallThrough_HasNoReturn =
578      diag::err_noreturn_lambda_has_return_expr;
579    D.diag_MaybeFallThrough_ReturnsNonVoid =
580      diag::warn_maybe_falloff_nonvoid_lambda;
581    D.diag_AlwaysFallThrough_HasNoReturn =
582      diag::err_noreturn_lambda_has_return_expr;
583    D.diag_AlwaysFallThrough_ReturnsNonVoid =
584      diag::warn_falloff_nonvoid_lambda;
585    D.diag_NeverFallThroughOrReturn = 0;
586    D.funMode = Lambda;
587    return D;
588  }
589
590  bool checkDiagnostics(DiagnosticsEngine &Dbool ReturnsVoid,
591                        bool HasNoReturnconst {
592    if (funMode == Function) {
593      return (ReturnsVoid ||
594              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
595                          FuncLoc)) &&
596             (!HasNoReturn ||
597              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
598                          FuncLoc)) &&
599             (!ReturnsVoid ||
600              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
601    }
602    if (funMode == Coroutine) {
603      return (ReturnsVoid ||
604              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
605              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
606                          FuncLoc)) &&
607             (!HasNoReturn);
608    }
609    // For blocks / lambdas.
610    return ReturnsVoid && !HasNoReturn;
611  }
612};
613
614// anonymous namespace
615
616/// CheckFallThroughForBody - Check that we don't fall off the end of a
617/// function that should return a value.  Check that we don't fall off the end
618/// of a noreturn function.  We assume that functions and blocks not marked
619/// noreturn will return.
620static void CheckFallThroughForBody(Sema &Sconst Decl *Dconst Stmt *Body,
621                                    const BlockExpr *blkExpr,
622                                    const CheckFallThroughDiagnostics &CD,
623                                    AnalysisDeclContext &AC,
624                                    sema::FunctionScopeInfo *FSI) {
625
626  bool ReturnsVoid = false;
627  bool HasNoReturn = false;
628  bool IsCoroutine = FSI->isCoroutine();
629
630  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
631    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
632      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
633    else
634      ReturnsVoid = FD->getReturnType()->isVoidType();
635    HasNoReturn = FD->isNoReturn();
636  }
637  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
638    ReturnsVoid = MD->getReturnType()->isVoidType();
639    HasNoReturn = MD->hasAttr<NoReturnAttr>();
640  }
641  else if (isa<BlockDecl>(D)) {
642    QualType BlockTy = blkExpr->getType();
643    if (const FunctionType *FT =
644          BlockTy->getPointeeType()->getAs<FunctionType>()) {
645      if (FT->getReturnType()->isVoidType())
646        ReturnsVoid = true;
647      if (FT->getNoReturnAttr())
648        HasNoReturn = true;
649    }
650  }
651
652  DiagnosticsEngine &Diags = S.getDiagnostics();
653
654  // Short circuit for compilation speed.
655  if (CD.checkDiagnostics(DiagsReturnsVoidHasNoReturn))
656      return;
657  SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
658  auto EmitDiag = [&](SourceLocation Locunsigned DiagID) {
659    if (IsCoroutine)
660      S.Diag(LocDiagID) << FSI->CoroutinePromise->getType();
661    else
662      S.Diag(LocDiagID);
663  };
664
665  // cpu_dispatch functions permit empty function bodies for ICC compatibility.
666  if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
667    return;
668
669  // Either in a function body compound statement, or a function-try-block.
670  switch (CheckFallThrough(AC)) {
671    case UnknownFallThrough:
672      break;
673
674    case MaybeFallThrough:
675      if (HasNoReturn)
676        EmitDiag(RBraceCD.diag_MaybeFallThrough_HasNoReturn);
677      else if (!ReturnsVoid)
678        EmitDiag(RBraceCD.diag_MaybeFallThrough_ReturnsNonVoid);
679      break;
680    case AlwaysFallThrough:
681      if (HasNoReturn)
682        EmitDiag(RBraceCD.diag_AlwaysFallThrough_HasNoReturn);
683      else if (!ReturnsVoid)
684        EmitDiag(RBraceCD.diag_AlwaysFallThrough_ReturnsNonVoid);
685      break;
686    case NeverFallThroughOrReturn:
687      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
688        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
689          S.Diag(LBraceCD.diag_NeverFallThroughOrReturn) << 0 << FD;
690        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
691          S.Diag(LBraceCD.diag_NeverFallThroughOrReturn) << 1 << MD;
692        } else {
693          S.Diag(LBraceCD.diag_NeverFallThroughOrReturn);
694        }
695      }
696      break;
697    case NeverFallThrough:
698      break;
699  }
700}
701
702//===----------------------------------------------------------------------===//
703// -Wuninitialized
704//===----------------------------------------------------------------------===//
705
706namespace {
707/// ContainsReference - A visitor class to search for references to
708/// a particular declaration (the needle) within any evaluated component of an
709/// expression (recursively).
710class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
711  bool FoundReference;
712  const DeclRefExpr *Needle;
713
714public:
715  typedef ConstEvaluatedExprVisitor<ContainsReferenceInherited;
716
717  ContainsReference(ASTContext &Contextconst DeclRefExpr *Needle)
718    : Inherited(Context), FoundReference(false), Needle(Needle) {}
719
720  void VisitExpr(const Expr *E) {
721    // Stop evaluating if we already have a reference.
722    if (FoundReference)
723      return;
724
725    Inherited::VisitExpr(E);
726  }
727
728  void VisitDeclRefExpr(const DeclRefExpr *E) {
729    if (E == Needle)
730      FoundReference = true;
731    else
732      Inherited::VisitDeclRefExpr(E);
733  }
734
735  bool doesContainReference() const { return FoundReference; }
736};
737// anonymous namespace
738
739static bool SuggestInitializationFixit(Sema &Sconst VarDecl *VD) {
740  QualType VariableTy = VD->getType().getCanonicalType();
741  if (VariableTy->isBlockPointerType() &&
742      !VD->hasAttr<BlocksAttr>()) {
743    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
744        << VD->getDeclName()
745        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
746    return true;
747  }
748
749  // Don't issue a fixit if there is already an initializer.
750  if (VD->getInit())
751    return false;
752
753  // Don't suggest a fixit inside macros.
754  if (VD->getEndLoc().isMacroID())
755    return false;
756
757  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
758
759  // Suggest possible initialization (if any).
760  std::string Init = S.getFixItZeroInitializerForType(VariableTyLoc);
761  if (Init.empty())
762    return false;
763
764  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
765    << FixItHint::CreateInsertion(Loc, Init);
766  return true;
767}
768
769/// Create a fixit to remove an if-like statement, on the assumption that its
770/// condition is CondVal.
771static void CreateIfFixit(Sema &Sconst Stmt *Ifconst Stmt *Then,
772                          const Stmt *Elsebool CondVal,
773                          FixItHint &Fixit1FixItHint &Fixit2) {
774  if (CondVal) {
775    // If condition is always true, remove all but the 'then'.
776    Fixit1 = FixItHint::CreateRemoval(
777        CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
778    if (Else) {
779      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
780      Fixit2 =
781          FixItHint::CreateRemoval(SourceRange(ElseKwLocElse->getEndLoc()));
782    }
783  } else {
784    // If condition is always false, remove all but the 'else'.
785    if (Else)
786      Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
787          If->getBeginLoc(), Else->getBeginLoc()));
788    else
789      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
790  }
791}
792
793/// DiagUninitUse -- Helper function to produce a diagnostic for an
794/// uninitialized use of a variable.
795static void DiagUninitUse(Sema &Sconst VarDecl *VDconst UninitUse &Use,
796                          bool IsCapturedByBlock) {
797  bool Diagnosed = false;
798
799  switch (Use.getKind()) {
800  case UninitUse::Always:
801    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
802        << VD->getDeclName() << IsCapturedByBlock
803        << Use.getUser()->getSourceRange();
804    return;
805
806  case UninitUse::AfterDecl:
807  case UninitUse::AfterCall:
808    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
809      << VD->getDeclName() << IsCapturedByBlock
810      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
811      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
812      << VD->getSourceRange();
813    S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
814        << IsCapturedByBlock << Use.getUser()->getSourceRange();
815    return;
816
817  case UninitUse::Maybe:
818  case UninitUse::Sometimes:
819    // Carry on to report sometimes-uninitialized branches, if possible,
820    // or a 'may be used uninitialized' diagnostic otherwise.
821    break;
822  }
823
824  // Diagnose each branch which leads to a sometimes-uninitialized use.
825  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
826       I != E; ++I) {
827    assert(Use.getKind() == UninitUse::Sometimes);
828
829    const Expr *User = Use.getUser();
830    const Stmt *Term = I->Terminator;
831
832    // Information used when building the diagnostic.
833    unsigned DiagKind;
834    StringRef Str;
835    SourceRange Range;
836
837    // FixIts to suppress the diagnostic by removing the dead condition.
838    // For all binary terminators, branch 0 is taken if the condition is true,
839    // and branch 1 is taken if the condition is false.
840    int RemoveDiagKind = -1;
841    const char *FixitStr =
842        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
843                                  : (I->Output ? "1" : "0");
844    FixItHint Fixit1, Fixit2;
845
846    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
847    default:
848      // Don't know how to report this. Just fall back to 'may be used
849      // uninitialized'. FIXME: Can this happen?
850      continue;
851
852    // "condition is true / condition is false".
853    case Stmt::IfStmtClass: {
854      const IfStmt *IS = cast<IfStmt>(Term);
855      DiagKind = 0;
856      Str = "if";
857      Range = IS->getCond()->getSourceRange();
858      RemoveDiagKind = 0;
859      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
860                    I->Output, Fixit1, Fixit2);
861      break;
862    }
863    case Stmt::ConditionalOperatorClass: {
864      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
865      DiagKind = 0;
866      Str = "?:";
867      Range = CO->getCond()->getSourceRange();
868      RemoveDiagKind = 0;
869      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
870                    I->Output, Fixit1, Fixit2);
871      break;
872    }
873    case Stmt::BinaryOperatorClass: {
874      const BinaryOperator *BO = cast<BinaryOperator>(Term);
875      if (!BO->isLogicalOp())
876        continue;
877      DiagKind = 0;
878      Str = BO->getOpcodeStr();
879      Range = BO->getLHS()->getSourceRange();
880      RemoveDiagKind = 0;
881      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
882          (BO->getOpcode() == BO_LOr && !I->Output))
883        // true && y -> y, false || y -> y.
884        Fixit1 = FixItHint::CreateRemoval(
885            SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
886      else
887        // false && y -> false, true || y -> true.
888        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
889      break;
890    }
891
892    // "loop is entered / loop is exited".
893    case Stmt::WhileStmtClass:
894      DiagKind = 1;
895      Str = "while";
896      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
897      RemoveDiagKind = 1;
898      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
899      break;
900    case Stmt::ForStmtClass:
901      DiagKind = 1;
902      Str = "for";
903      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
904      RemoveDiagKind = 1;
905      if (I->Output)
906        Fixit1 = FixItHint::CreateRemoval(Range);
907      else
908        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
909      break;
910    case Stmt::CXXForRangeStmtClass:
911      if (I->Output == 1) {
912        // The use occurs if a range-based for loop's body never executes.
913        // That may be impossible, and there's no syntactic fix for this,
914        // so treat it as a 'may be uninitialized' case.
915        continue;
916      }
917      DiagKind = 1;
918      Str = "for";
919      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
920      break;
921
922    // "condition is true / loop is exited".
923    case Stmt::DoStmtClass:
924      DiagKind = 2;
925      Str = "do";
926      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
927      RemoveDiagKind = 1;
928      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
929      break;
930
931    // "switch case is taken".
932    case Stmt::CaseStmtClass:
933      DiagKind = 3;
934      Str = "case";
935      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
936      break;
937    case Stmt::DefaultStmtClass:
938      DiagKind = 3;
939      Str = "default";
940      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
941      break;
942    }
943
944    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
945      << VD->getDeclName() << IsCapturedByBlock << DiagKind
946      << Str << I->Output << Range;
947    S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
948        << IsCapturedByBlock << User->getSourceRange();
949    if (RemoveDiagKind != -1)
950      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
951        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
952
953    Diagnosed = true;
954  }
955
956  if (!Diagnosed)
957    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
958        << VD->getDeclName() << IsCapturedByBlock
959        << Use.getUser()->getSourceRange();
960}
961
962/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
963/// uninitialized variable. This manages the different forms of diagnostic
964/// emitted for particular types of uses. Returns true if the use was diagnosed
965/// as a warning. If a particular use is one we omit warnings for, returns
966/// false.
967static bool DiagnoseUninitializedUse(Sema &Sconst VarDecl *VD,
968                                     const UninitUse &Use,
969                                     bool alwaysReportSelfInit = false) {
970  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
971    // Inspect the initializer of the variable declaration which is
972    // being referenced prior to its initialization. We emit
973    // specialized diagnostics for self-initialization, and we
974    // specifically avoid warning about self references which take the
975    // form of:
976    //
977    //   int x = x;
978    //
979    // This is used to indicate to GCC that 'x' is intentionally left
980    // uninitialized. Proven code paths which access 'x' in
981    // an uninitialized state after this will still warn.
982    if (const Expr *Initializer = VD->getInit()) {
983      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
984        return false;
985
986      ContainsReference CR(S.ContextDRE);
987      CR.Visit(Initializer);
988      if (CR.doesContainReference()) {
989        S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
990            << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
991        return true;
992      }
993    }
994
995    DiagUninitUse(SVDUsefalse);
996  } else {
997    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
998    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
999      S.Diag(BE->getBeginLoc(),
1000             diag::warn_uninit_byref_blockvar_captured_by_block)
1001          << VD->getDeclName();
1002    else
1003      DiagUninitUse(SVDUsetrue);
1004  }
1005
1006  // Report where the variable was declared when the use wasn't within
1007  // the initializer of that declaration & we didn't already suggest
1008  // an initialization fixit.
1009  if (!SuggestInitializationFixit(S, VD))
1010    S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1011        << VD->getDeclName();
1012
1013  return true;
1014}
1015
1016namespace {
1017  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1018  public:
1019    FallthroughMapper(Sema &S)
1020      : FoundSwitchStatements(false),
1021        S(S) {
1022    }
1023
1024    bool foundSwitchStatements() const { return FoundSwitchStatements; }
1025
1026    void markFallthroughVisited(const AttributedStmt *Stmt) {
1027      bool Found = FallthroughStmts.erase(Stmt);
1028      assert(Found);
1029      (void)Found;
1030    }
1031
1032    typedef llvm::SmallPtrSet<const AttributedStmt*, 8AttrStmts;
1033
1034    const AttrStmts &getFallthroughStmts() const {
1035      return FallthroughStmts;
1036    }
1037
1038    void fillReachableBlocks(CFG *Cfg) {
1039       (0) . __assert_fail ("ReachableBlocks.empty() && \"ReachableBlocks already filled\"", "/home/seafit/code_projects/clang_source/clang/lib/Sema/AnalysisBasedWarnings.cpp", 1039, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1040      std::deque<const CFGBlock *> BlockQueue;
1041
1042      ReachableBlocks.insert(&Cfg->getEntry());
1043      BlockQueue.push_back(&Cfg->getEntry());
1044      // Mark all case blocks reachable to avoid problems with switching on
1045      // constants, covered enums, etc.
1046      // These blocks can contain fall-through annotations, and we don't want to
1047      // issue a warn_fallthrough_attr_unreachable for them.
1048      for (const auto *B : *Cfg) {
1049        const Stmt *L = B->getLabel();
1050        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1051          BlockQueue.push_back(B);
1052      }
1053
1054      while (!BlockQueue.empty()) {
1055        const CFGBlock *P = BlockQueue.front();
1056        BlockQueue.pop_front();
1057        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1058                                           E = P->succ_end();
1059             I != E; ++I) {
1060          if (*I && ReachableBlocks.insert(*I).second)
1061            BlockQueue.push_back(*I);
1062        }
1063      }
1064    }
1065
1066    bool checkFallThroughIntoBlock(const CFGBlock &Bint &AnnotatedCnt,
1067                                   bool IsTemplateInstantiation) {
1068       (0) . __assert_fail ("!ReachableBlocks.empty() && \"ReachableBlocks empty\"", "/home/seafit/code_projects/clang_source/clang/lib/Sema/AnalysisBasedWarnings.cpp", 1068, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1069
1070      int UnannotatedCnt = 0;
1071      AnnotatedCnt = 0;
1072
1073      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1074      while (!BlockQueue.empty()) {
1075        const CFGBlock *P = BlockQueue.front();
1076        BlockQueue.pop_front();
1077        if (!Pcontinue;
1078
1079        const Stmt *Term = P->getTerminator();
1080        if (Term && isa<SwitchStmt>(Term))
1081          continue// Switch statement, good.
1082
1083        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1084        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1085          continue// Previous case label has no statements, good.
1086
1087        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1088        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1089          continue// Case label is preceded with a normal label, good.
1090
1091        if (!ReachableBlocks.count(P)) {
1092          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1093                                                ElemEnd = P->rend();
1094               ElemIt != ElemEnd; ++ElemIt) {
1095            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1096              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1097                // Don't issue a warning for an unreachable fallthrough
1098                // attribute in template instantiations as it may not be
1099                // unreachable in all instantiations of the template.
1100                if (!IsTemplateInstantiation)
1101                  S.Diag(AS->getBeginLoc(),
1102                         diag::warn_fallthrough_attr_unreachable);
1103                markFallthroughVisited(AS);
1104                ++AnnotatedCnt;
1105                break;
1106              }
1107              // Don't care about other unreachable statements.
1108            }
1109          }
1110          // If there are no unreachable statements, this may be a special
1111          // case in CFG:
1112          // case X: {
1113          //    A a;  // A has a destructor.
1114          //    break;
1115          // }
1116          // // <<<< This place is represented by a 'hanging' CFG block.
1117          // case Y:
1118          continue;
1119        }
1120
1121        const Stmt *LastStmt = getLastStmt(*P);
1122        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1123          markFallthroughVisited(AS);
1124          ++AnnotatedCnt;
1125          continue// Fallthrough annotation, good.
1126        }
1127
1128        if (!LastStmt) { // This block contains no executable statements.
1129          // Traverse its predecessors.
1130          std::copy(P->pred_begin(), P->pred_end(),
1131                    std::back_inserter(BlockQueue));
1132          continue;
1133        }
1134
1135        ++UnannotatedCnt;
1136      }
1137      return !!UnannotatedCnt;
1138    }
1139
1140    // RecursiveASTVisitor setup.
1141    bool shouldWalkTypesOfTypeLocs() const { return false; }
1142
1143    bool VisitAttributedStmt(AttributedStmt *S) {
1144      if (asFallThroughAttr(S))
1145        FallthroughStmts.insert(S);
1146      return true;
1147    }
1148
1149    bool VisitSwitchStmt(SwitchStmt *S) {
1150      FoundSwitchStatements = true;
1151      return true;
1152    }
1153
1154    // We don't want to traverse local type declarations. We analyze their
1155    // methods separately.
1156    bool TraverseDecl(Decl *D) { return true; }
1157
1158    // We analyze lambda bodies separately. Skip them here.
1159    bool TraverseLambdaExpr(LambdaExpr *LE) {
1160      // Traverse the captures, but not the body.
1161      for (const auto &C : zip(LE->captures(), LE->capture_inits()))
1162        TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1163      return true;
1164    }
1165
1166  private:
1167
1168    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1169      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1170        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1171          return AS;
1172      }
1173      return nullptr;
1174    }
1175
1176    static const Stmt *getLastStmt(const CFGBlock &B) {
1177      if (const Stmt *Term = B.getTerminator())
1178        return Term;
1179      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1180                                            ElemEnd = B.rend();
1181                                            ElemIt != ElemEnd; ++ElemIt) {
1182        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1183          return CS->getStmt();
1184      }
1185      // Workaround to detect a statement thrown out by CFGBuilder:
1186      //   case X: {} case Y:
1187      //   case X: ; case Y:
1188      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1189        if (!isa<SwitchCase>(SW->getSubStmt()))
1190          return SW->getSubStmt();
1191
1192      return nullptr;
1193    }
1194
1195    bool FoundSwitchStatements;
1196    AttrStmts FallthroughStmts;
1197    Sema &S;
1198    llvm::SmallPtrSet<const CFGBlock *, 16ReachableBlocks;
1199  };
1200// anonymous namespace
1201
1202static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1203                                            SourceLocation Loc) {
1204  TokenValue FallthroughTokens[] = {
1205    tok::l_squaretok::l_square,
1206    PP.getIdentifierInfo("fallthrough"),
1207    tok::r_squaretok::r_square
1208  };
1209
1210  TokenValue ClangFallthroughTokens[] = {
1211    tok::l_squaretok::l_squarePP.getIdentifierInfo("clang"),
1212    tok::coloncolonPP.getIdentifierInfo("fallthrough"),
1213    tok::r_squaretok::r_square
1214  };
1215
1216  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17;
1217
1218  StringRef MacroName;
1219  if (PreferClangAttr)
1220    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1221  if (MacroName.empty())
1222    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1223  if (MacroName.empty() && !PreferClangAttr)
1224    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1225  if (MacroName.empty())
1226    MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]";
1227  return MacroName;
1228}
1229
1230static void DiagnoseSwitchLabelsFallthrough(Sema &SAnalysisDeclContext &AC,
1231                                            bool PerFunction) {
1232  // Only perform this analysis when using [[]] attributes. There is no good
1233  // workflow for this warning when not using C++11. There is no good way to
1234  // silence the warning (no attribute is available) unless we are using
1235  // [[]] attributes. One could use pragmas to silence the warning, but as a
1236  // general solution that is gross and not in the spirit of this warning.
1237  //
1238  // NOTE: This an intermediate solution. There are on-going discussions on
1239  // how to properly support this warning outside of C++11 with an annotation.
1240  if (!AC.getASTContext().getLangOpts().DoubleSquareBracketAttributes)
1241    return;
1242
1243  FallthroughMapper FM(S);
1244  FM.TraverseStmt(AC.getBody());
1245
1246  if (!FM.foundSwitchStatements())
1247    return;
1248
1249  if (PerFunction && FM.getFallthroughStmts().empty())
1250    return;
1251
1252  CFG *Cfg = AC.getCFG();
1253
1254  if (!Cfg)
1255    return;
1256
1257  FM.fillReachableBlocks(Cfg);
1258
1259  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1260    const Stmt *Label = B->getLabel();
1261
1262    if (!Label || !isa<SwitchCase>(Label))
1263      continue;
1264
1265    int AnnotatedCnt;
1266
1267    bool IsTemplateInstantiation = false;
1268    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1269      IsTemplateInstantiation = Function->isTemplateInstantiation();
1270    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1271                                      IsTemplateInstantiation))
1272      continue;
1273
1274    S.Diag(Label->getBeginLoc(),
1275           PerFunction ? diag::warn_unannotated_fallthrough_per_function
1276                       : diag::warn_unannotated_fallthrough);
1277
1278    if (!AnnotatedCnt) {
1279      SourceLocation L = Label->getBeginLoc();
1280      if (L.isMacroID())
1281        continue;
1282      if (S.getLangOpts().CPlusPlus11) {
1283        const Stmt *Term = B->getTerminator();
1284        // Skip empty cases.
1285        while (B->empty() && !Term && B->succ_size() == 1) {
1286          B = *B->succ_begin();
1287          Term = B->getTerminator();
1288        }
1289        if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1290          Preprocessor &PP = S.getPreprocessor();
1291          StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1292          SmallString<64> TextToInsert(AnnotationSpelling);
1293          TextToInsert += "; ";
1294          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1295              AnnotationSpelling <<
1296              FixItHint::CreateInsertion(L, TextToInsert);
1297        }
1298      }
1299      S.Diag(L, diag::note_insert_break_fixit) <<
1300        FixItHint::CreateInsertion(L, "break; ");
1301    }
1302  }
1303
1304  for (const auto *F : FM.getFallthroughStmts())
1305    S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1306}
1307
1308static bool isInLoop(const ASTContext &Ctxconst ParentMap &PM,
1309                     const Stmt *S) {
1310  assert(S);
1311
1312  do {
1313    switch (S->getStmtClass()) {
1314    case Stmt::ForStmtClass:
1315    case Stmt::WhileStmtClass:
1316    case Stmt::CXXForRangeStmtClass:
1317    case Stmt::ObjCForCollectionStmtClass:
1318      return true;
1319    case Stmt::DoStmtClass: {
1320      Expr::EvalResult Result;
1321      if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(ResultCtx))
1322        return true;
1323      return Result.Val.getInt().getBoolValue();
1324    }
1325    default:
1326      break;
1327    }
1328  } while ((S = PM.getParent(S)));
1329
1330  return false;
1331}
1332
1333static void diagnoseRepeatedUseOfWeak(Sema &S,
1334                                      const sema::FunctionScopeInfo *CurFn,
1335                                      const Decl *D,
1336                                      const ParentMap &PM) {
1337  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1338  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1339  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1340  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1341  StmtUsesPair;
1342
1343  ASTContext &Ctx = S.getASTContext();
1344
1345  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1346
1347  // Extract all weak objects that are referenced more than once.
1348  SmallVector<StmtUsesPair8UsesByStmt;
1349  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1350       I != E; ++I) {
1351    const WeakUseVector &Uses = I->second;
1352
1353    // Find the first read of the weak object.
1354    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1355    for ( ; UI != UE; ++UI) {
1356      if (UI->isUnsafe())
1357        break;
1358    }
1359
1360    // If there were only writes to this object, don't warn.
1361    if (UI == UE)
1362      continue;
1363
1364    // If there was only one read, followed by any number of writes, and the
1365    // read is not within a loop, don't warn. Additionally, don't warn in a
1366    // loop if the base object is a local variable -- local variables are often
1367    // changed in loops.
1368    if (UI == Uses.begin()) {
1369      WeakUseVector::const_iterator UI2 = UI;
1370      for (++UI2; UI2 != UE; ++UI2)
1371        if (UI2->isUnsafe())
1372          break;
1373
1374      if (UI2 == UE) {
1375        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1376          continue;
1377
1378        const WeakObjectProfileTy &Profile = I->first;
1379        if (!Profile.isExactProfile())
1380          continue;
1381
1382        const NamedDecl *Base = Profile.getBase();
1383        if (!Base)
1384          Base = Profile.getProperty();
1385         (0) . __assert_fail ("Base && \"A profile always has a base or property.\"", "/home/seafit/code_projects/clang_source/clang/lib/Sema/AnalysisBasedWarnings.cpp", 1385, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(Base && "A profile always has a base or property.");
1386
1387        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1388          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1389            continue;
1390      }
1391    }
1392
1393    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1394  }
1395
1396  if (UsesByStmt.empty())
1397    return;
1398
1399  // Sort by first use so that we emit the warnings in a deterministic order.
1400  SourceManager &SM = S.getSourceManager();
1401  llvm::sort(UsesByStmt,
1402             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1403               return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1404                                                   RHS.first->getBeginLoc());
1405             });
1406
1407  // Classify the current code body for better warning text.
1408  // This enum should stay in sync with the cases in
1409  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1410  // FIXME: Should we use a common classification enum and the same set of
1411  // possibilities all throughout Sema?
1412  enum {
1413    Function,
1414    Method,
1415    Block,
1416    Lambda
1417  } FunctionKind;
1418
1419  if (isa<sema::BlockScopeInfo>(CurFn))
1420    FunctionKind = Block;
1421  else if (isa<sema::LambdaScopeInfo>(CurFn))
1422    FunctionKind = Lambda;
1423  else if (isa<ObjCMethodDecl>(D))
1424    FunctionKind = Method;
1425  else
1426    FunctionKind = Function;
1427
1428  // Iterate through the sorted problems and emit warnings for each.
1429  for (const auto &P : UsesByStmt) {
1430    const Stmt *FirstRead = P.first;
1431    const WeakObjectProfileTy &Key = P.second->first;
1432    const WeakUseVector &Uses = P.second->second;
1433
1434    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1435    // may not contain enough information to determine that these are different
1436    // properties. We can only be 100% sure of a repeated use in certain cases,
1437    // and we adjust the diagnostic kind accordingly so that the less certain
1438    // case can be turned off if it is too noisy.
1439    unsigned DiagKind;
1440    if (Key.isExactProfile())
1441      DiagKind = diag::warn_arc_repeated_use_of_weak;
1442    else
1443      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1444
1445    // Classify the weak object being accessed for better warning text.
1446    // This enum should stay in sync with the cases in
1447    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1448    enum {
1449      Variable,
1450      Property,
1451      ImplicitProperty,
1452      Ivar
1453    } ObjectKind;
1454
1455    const NamedDecl *KeyProp = Key.getProperty();
1456    if (isa<VarDecl>(KeyProp))
1457      ObjectKind = Variable;
1458    else if (isa<ObjCPropertyDecl>(KeyProp))
1459      ObjectKind = Property;
1460    else if (isa<ObjCMethodDecl>(KeyProp))
1461      ObjectKind = ImplicitProperty;
1462    else if (isa<ObjCIvarDecl>(KeyProp))
1463      ObjectKind = Ivar;
1464    else
1465      llvm_unreachable("Unexpected weak object kind!");
1466
1467    // Do not warn about IBOutlet weak property receivers being set to null
1468    // since they are typically only used from the main thread.
1469    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1470      if (Prop->hasAttr<IBOutletAttr>())
1471        continue;
1472
1473    // Show the first time the object was read.
1474    S.Diag(FirstRead->getBeginLoc(), DiagKind)
1475        << int(ObjectKind) << KeyProp << int(FunctionKind)
1476        << FirstRead->getSourceRange();
1477
1478    // Print all the other accesses as notes.
1479    for (const auto &Use : Uses) {
1480      if (Use.getUseExpr() == FirstRead)
1481        continue;
1482      S.Diag(Use.getUseExpr()->getBeginLoc(),
1483             diag::note_arc_weak_also_accessed_here)
1484          << Use.getUseExpr()->getSourceRange();
1485    }
1486  }
1487}
1488
1489namespace {
1490class UninitValsDiagReporter : public UninitVariablesHandler {
1491  Sema &S;
1492  typedef SmallVector<UninitUse2UsesVec;
1493  typedef llvm::PointerIntPair<UsesVec *, 1boolMappedType;
1494  // Prefer using MapVector to DenseMap, so that iteration order will be
1495  // the same as insertion order. This is needed to obtain a deterministic
1496  // order of diagnostics when calling flushDiagnostics().
1497  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1498  UsesMap uses;
1499
1500public:
1501  UninitValsDiagReporter(Sema &S) : S(S) {}
1502  ~UninitValsDiagReporter() override { flushDiagnostics(); }
1503
1504  MappedType &getUses(const VarDecl *vd) {
1505    MappedType &V = uses[vd];
1506    if (!V.getPointer())
1507      V.setPointer(new UsesVec());
1508    return V;
1509  }
1510
1511  void handleUseOfUninitVariable(const VarDecl *vd,
1512                                 const UninitUse &use) override {
1513    getUses(vd).getPointer()->push_back(use);
1514  }
1515
1516  void handleSelfInit(const VarDecl *vd) override {
1517    getUses(vd).setInt(true);
1518  }
1519
1520  void flushDiagnostics() {
1521    for (const auto &P : uses) {
1522      const VarDecl *vd = P.first;
1523      const MappedType &V = P.second;
1524
1525      UsesVec *vec = V.getPointer();
1526      bool hasSelfInit = V.getInt();
1527
1528      // Specially handle the case where we have uses of an uninitialized
1529      // variable, but the root cause is an idiomatic self-init.  We want
1530      // to report the diagnostic at the self-init since that is the root cause.
1531      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1532        DiagnoseUninitializedUse(S, vd,
1533                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
1534                                           /* isAlwaysUninit */ true),
1535                                 /* alwaysReportSelfInit */ true);
1536      else {
1537        // Sort the uses by their SourceLocations.  While not strictly
1538        // guaranteed to produce them in line/column order, this will provide
1539        // a stable ordering.
1540        llvm::sort(vec->begin(), vec->end(),
1541                   [](const UninitUse &a, const UninitUse &b) {
1542          // Prefer a more confident report over a less confident one.
1543          if (a.getKind() != b.getKind())
1544            return a.getKind() > b.getKind();
1545          return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1546        });
1547
1548        for (const auto &U : *vec) {
1549          // If we have self-init, downgrade all uses to 'may be uninitialized'.
1550          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1551
1552          if (DiagnoseUninitializedUse(S, vd, Use))
1553            // Skip further diagnostics for this variable. We try to warn only
1554            // on the first point at which a variable is used uninitialized.
1555            break;
1556        }
1557      }
1558
1559      // Release the uses vector.
1560      delete vec;
1561    }
1562
1563    uses.clear();
1564  }
1565
1566private:
1567  static bool hasAlwaysUninitializedUse(const UsesVecvec) {
1568    return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1569      return U.getKind() == UninitUse::Always ||
1570             U.getKind() == UninitUse::AfterCall ||
1571             U.getKind() == UninitUse::AfterDecl;
1572    });
1573  }
1574};
1575// anonymous namespace
1576
1577namespace clang {
1578namespace {
1579typedef SmallVector<PartialDiagnosticAt1OptionalNotes;
1580typedef std::pair<PartialDiagnosticAtOptionalNotesDelayedDiag;
1581typedef std::list<DelayedDiagDiagList;
1582
1583struct SortDiagBySourceLocation {
1584  SourceManager &SM;
1585  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1586
1587  bool operator()(const DelayedDiag &leftconst DelayedDiag &right) {
1588    // Although this call will be slow, this is only called when outputting
1589    // multiple warnings.
1590    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1591  }
1592};
1593// anonymous namespace
1594// namespace clang
1595
1596//===----------------------------------------------------------------------===//
1597// -Wthread-safety
1598//===----------------------------------------------------------------------===//
1599namespace clang {
1600namespace threadSafety {
1601namespace {
1602class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1603  Sema &S;
1604  DiagList Warnings;
1605  SourceLocation FunLocationFunEndLocation;
1606
1607  const FunctionDecl *CurrentFunction;
1608  bool Verbose;
1609
1610  OptionalNotes getNotes() const {
1611    if (Verbose && CurrentFunction) {
1612      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1613                                S.PDiag(diag::note_thread_warning_in_fun)
1614                                    << CurrentFunction);
1615      return OptionalNotes(1, FNote);
1616    }
1617    return OptionalNotes();
1618  }
1619
1620  OptionalNotes getNotes(const PartialDiagnosticAt &Noteconst {
1621    OptionalNotes ONS(1, Note);
1622    if (Verbose && CurrentFunction) {
1623      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1624                                S.PDiag(diag::note_thread_warning_in_fun)
1625                                    << CurrentFunction);
1626      ONS.push_back(std::move(FNote));
1627    }
1628    return ONS;
1629  }
1630
1631  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1632                         const PartialDiagnosticAt &Note2const {
1633    OptionalNotes ONS;
1634    ONS.push_back(Note1);
1635    ONS.push_back(Note2);
1636    if (Verbose && CurrentFunction) {
1637      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1638                                S.PDiag(diag::note_thread_warning_in_fun)
1639                                    << CurrentFunction);
1640      ONS.push_back(std::move(FNote));
1641    }
1642    return ONS;
1643  }
1644
1645  OptionalNotes makeLockedHereNote(SourceLocation LocLockedStringRef Kind) {
1646    return LocLocked.isValid()
1647               ? getNotes(PartialDiagnosticAt(
1648                     LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1649               : getNotes();
1650  }
1651
1652 public:
1653  ThreadSafetyReporter(Sema &SSourceLocation FLSourceLocation FEL)
1654    : S(S), FunLocation(FL), FunEndLocation(FEL),
1655      CurrentFunction(nullptr), Verbose(false) {}
1656
1657  void setVerbose(bool b) { Verbose = b; }
1658
1659  /// Emit all buffered diagnostics in order of sourcelocation.
1660  /// We need to output diagnostics produced while iterating through
1661  /// the lockset in deterministic order, so this function orders diagnostics
1662  /// and outputs them.
1663  void emitDiagnostics() {
1664    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1665    for (const auto &Diag : Warnings) {
1666      S.Diag(Diag.first.firstDiag.first.second);
1667      for (const auto &Note : Diag.second)
1668        S.Diag(Note.first, Note.second);
1669    }
1670  }
1671
1672  void handleInvalidLockExp(StringRef KindSourceLocation Loc) override {
1673    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1674                                         << Loc);
1675    Warnings.emplace_back(std::move(Warning), getNotes());
1676  }
1677
1678  void handleUnmatchedUnlock(StringRef KindName LockName,
1679                             SourceLocation Loc) override {
1680    if (Loc.isInvalid())
1681      Loc = FunLocation;
1682    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1683                                         << Kind << LockName);
1684    Warnings.emplace_back(std::move(Warning), getNotes());
1685  }
1686
1687  void handleIncorrectUnlockKind(StringRef KindName LockName,
1688                                 LockKind ExpectedLockKind Received,
1689                                 SourceLocation LocLocked,
1690                                 SourceLocation LocUnlock) override {
1691    if (LocUnlock.isInvalid())
1692      LocUnlock = FunLocation;
1693    PartialDiagnosticAt Warning(
1694        LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1695                       << Kind << LockName << Received << Expected);
1696    Warnings.emplace_back(std::move(Warning),
1697                          makeLockedHereNote(LocLocked, Kind));
1698  }
1699
1700  void handleDoubleLock(StringRef KindName LockNameSourceLocation LocLocked,
1701                        SourceLocation LocDoubleLock) override {
1702    if (LocDoubleLock.isInvalid())
1703      LocDoubleLock = FunLocation;
1704    PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1705                                                   << Kind << LockName);
1706    Warnings.emplace_back(std::move(Warning),
1707                          makeLockedHereNote(LocLocked, Kind));
1708  }
1709
1710  void handleMutexHeldEndOfScope(StringRef KindName LockName,
1711                                 SourceLocation LocLocked,
1712                                 SourceLocation LocEndOfScope,
1713                                 LockErrorKind LEK) override {
1714    unsigned DiagID = 0;
1715    switch (LEK) {
1716      case LEK_LockedSomePredecessors:
1717        DiagID = diag::warn_lock_some_predecessors;
1718        break;
1719      case LEK_LockedSomeLoopIterations:
1720        DiagID = diag::warn_expecting_lock_held_on_loop;
1721        break;
1722      case LEK_LockedAtEndOfFunction:
1723        DiagID = diag::warn_no_unlock;
1724        break;
1725      case LEK_NotLockedAtEndOfFunction:
1726        DiagID = diag::warn_expecting_locked;
1727        break;
1728    }
1729    if (LocEndOfScope.isInvalid())
1730      LocEndOfScope = FunEndLocation;
1731
1732    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1733                                                               << LockName);
1734    Warnings.emplace_back(std::move(Warning),
1735                          makeLockedHereNote(LocLocked, Kind));
1736  }
1737
1738  void handleExclusiveAndShared(StringRef KindName LockName,
1739                                SourceLocation Loc1,
1740                                SourceLocation Loc2) override {
1741    PartialDiagnosticAt Warning(Loc1,
1742                                S.PDiag(diag::warn_lock_exclusive_and_shared)
1743                                    << Kind << LockName);
1744    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1745                                       << Kind << LockName);
1746    Warnings.emplace_back(std::move(Warning), getNotes(Note));
1747  }
1748
1749  void handleNoMutexHeld(StringRef Kindconst NamedDecl *D,
1750                         ProtectedOperationKind POKAccessKind AK,
1751                         SourceLocation Loc) override {
1752     (0) . __assert_fail ("(POK == POK_VarAccess || POK == POK_VarDereference) && \"Only works for variables\"", "/home/seafit/code_projects/clang_source/clang/lib/Sema/AnalysisBasedWarnings.cpp", 1753, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1753 (0) . __assert_fail ("(POK == POK_VarAccess || POK == POK_VarDereference) && \"Only works for variables\"", "/home/seafit/code_projects/clang_source/clang/lib/Sema/AnalysisBasedWarnings.cpp", 1753, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">           "Only works for variables");
1754    unsigned DiagID = POK == POK_VarAccess?
1755                        diag::warn_variable_requires_any_lock:
1756                        diag::warn_var_deref_requires_any_lock;
1757    PartialDiagnosticAt Warning(LocS.PDiag(DiagID)
1758      << D << getLockKindFromAccessKind(AK));
1759    Warnings.emplace_back(std::move(Warning), getNotes());
1760  }
1761
1762  void handleMutexNotHeld(StringRef Kindconst NamedDecl *D,
1763                          ProtectedOperationKind POKName LockName,
1764                          LockKind LKSourceLocation Loc,
1765                          Name *PossibleMatch) override {
1766    unsigned DiagID = 0;
1767    if (PossibleMatch) {
1768      switch (POK) {
1769        case POK_VarAccess:
1770          DiagID = diag::warn_variable_requires_lock_precise;
1771          break;
1772        case POK_VarDereference:
1773          DiagID = diag::warn_var_deref_requires_lock_precise;
1774          break;
1775        case POK_FunctionCall:
1776          DiagID = diag::warn_fun_requires_lock_precise;
1777          break;
1778        case POK_PassByRef:
1779          DiagID = diag::warn_guarded_pass_by_reference;
1780          break;
1781        case POK_PtPassByRef:
1782          DiagID = diag::warn_pt_guarded_pass_by_reference;
1783          break;
1784      }
1785      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1786                                                       << D
1787                                                       << LockName << LK);
1788      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1789                                        << *PossibleMatch);
1790      if (Verbose && POK == POK_VarAccess) {
1791        PartialDiagnosticAt VNote(D->getLocation(),
1792                                 S.PDiag(diag::note_guarded_by_declared_here)
1793                                     << D->getNameAsString());
1794        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1795      } else
1796        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1797    } else {
1798      switch (POK) {
1799        case POK_VarAccess:
1800          DiagID = diag::warn_variable_requires_lock;
1801          break;
1802        case POK_VarDereference:
1803          DiagID = diag::warn_var_deref_requires_lock;
1804          break;
1805        case POK_FunctionCall:
1806          DiagID = diag::warn_fun_requires_lock;
1807          break;
1808        case POK_PassByRef:
1809          DiagID = diag::warn_guarded_pass_by_reference;
1810          break;
1811        case POK_PtPassByRef:
1812          DiagID = diag::warn_pt_guarded_pass_by_reference;
1813          break;
1814      }
1815      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1816                                                       << D
1817                                                       << LockName << LK);
1818      if (Verbose && POK == POK_VarAccess) {
1819        PartialDiagnosticAt Note(D->getLocation(),
1820                                 S.PDiag(diag::note_guarded_by_declared_here));
1821        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1822      } else
1823        Warnings.emplace_back(std::move(Warning), getNotes());
1824    }
1825  }
1826
1827  void handleNegativeNotHeld(StringRef KindName LockNameName Neg,
1828                             SourceLocation Loc) override {
1829    PartialDiagnosticAt Warning(Loc,
1830        S.PDiag(diag::warn_acquire_requires_negative_cap)
1831        << Kind << LockName << Neg);
1832    Warnings.emplace_back(std::move(Warning), getNotes());
1833  }
1834
1835  void handleFunExcludesLock(StringRef KindName FunNameName LockName,
1836                             SourceLocation Loc) override {
1837    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1838                                         << Kind << FunName << LockName);
1839    Warnings.emplace_back(std::move(Warning), getNotes());
1840  }
1841
1842  void handleLockAcquiredBefore(StringRef KindName L1NameName L2Name,
1843                                SourceLocation Loc) override {
1844    PartialDiagnosticAt Warning(Loc,
1845      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1846    Warnings.emplace_back(std::move(Warning), getNotes());
1847  }
1848
1849  void handleBeforeAfterCycle(Name L1NameSourceLocation Loc) override {
1850    PartialDiagnosticAt Warning(Loc,
1851      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1852    Warnings.emplace_back(std::move(Warning), getNotes());
1853  }
1854
1855  void enterFunction(const FunctionDeclFD) override {
1856    CurrentFunction = FD;
1857  }
1858
1859  void leaveFunction(const FunctionDeclFD) override {
1860    CurrentFunction = nullptr;
1861  }
1862};
1863// anonymous namespace
1864// namespace threadSafety
1865// namespace clang
1866
1867//===----------------------------------------------------------------------===//
1868// -Wconsumed
1869//===----------------------------------------------------------------------===//
1870
1871namespace clang {
1872namespace consumed {
1873namespace {
1874class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1875
1876  Sema &S;
1877  DiagList Warnings;
1878
1879public:
1880
1881  ConsumedWarningsHandler(Sema &S) : S(S) {}
1882
1883  void emitDiagnostics() override {
1884    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1885    for (const auto &Diag : Warnings) {
1886      S.Diag(Diag.first.firstDiag.first.second);
1887      for (const auto &Note : Diag.second)
1888        S.Diag(Note.first, Note.second);
1889    }
1890  }
1891
1892  void warnLoopStateMismatch(SourceLocation Loc,
1893                             StringRef VariableName) override {
1894    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1895      VariableName);
1896
1897    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1898  }
1899
1900  void warnParamReturnTypestateMismatch(SourceLocation Loc,
1901                                        StringRef VariableName,
1902                                        StringRef ExpectedState,
1903                                        StringRef ObservedState) override {
1904
1905    PartialDiagnosticAt Warning(Loc, S.PDiag(
1906      diag::warn_param_return_typestate_mismatch) << VariableName <<
1907        ExpectedState << ObservedState);
1908
1909    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1910  }
1911
1912  void warnParamTypestateMismatch(SourceLocation LocStringRef ExpectedState,
1913                                  StringRef ObservedState) override {
1914
1915    PartialDiagnosticAt Warning(Loc, S.PDiag(
1916      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1917
1918    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1919  }
1920
1921  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1922                                              StringRef TypeName) override {
1923    PartialDiagnosticAt Warning(Loc, S.PDiag(
1924      diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1925
1926    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1927  }
1928
1929  void warnReturnTypestateMismatch(SourceLocation LocStringRef ExpectedState,
1930                                   StringRef ObservedState) override {
1931
1932    PartialDiagnosticAt Warning(Loc, S.PDiag(
1933      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1934
1935    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1936  }
1937
1938  void warnUseOfTempInInvalidState(StringRef MethodNameStringRef State,
1939                                   SourceLocation Loc) override {
1940
1941    PartialDiagnosticAt Warning(Loc, S.PDiag(
1942      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1943
1944    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1945  }
1946
1947  void warnUseInInvalidState(StringRef MethodNameStringRef VariableName,
1948                             StringRef StateSourceLocation Loc) override {
1949
1950    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1951                                MethodName << VariableName << State);
1952
1953    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1954  }
1955};
1956// anonymous namespace
1957// namespace consumed
1958// namespace clang
1959
1960//===----------------------------------------------------------------------===//
1961// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1962//  warnings on a function, method, or block.
1963//===----------------------------------------------------------------------===//
1964
1965clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1966  enableCheckFallThrough = 1;
1967  enableCheckUnreachable = 0;
1968  enableThreadSafetyAnalysis = 0;
1969  enableConsumedAnalysis = 0;
1970}
1971
1972static unsigned isEnabled(DiagnosticsEngine &Dunsigned diag) {
1973  return (unsigned)!D.isIgnored(diagSourceLocation());
1974}
1975
1976clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1977  : S(s),
1978    NumFunctionsAnalyzed(0),
1979    NumFunctionsWithBadCFGs(0),
1980    NumCFGBlocks(0),
1981    MaxCFGBlocksPerFunction(0),
1982    NumUninitAnalysisFunctions(0),
1983    NumUninitAnalysisVariables(0),
1984    MaxUninitAnalysisVariablesPerFunction(0),
1985    NumUninitAnalysisBlockVisits(0),
1986    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1987
1988  using namespace diag;
1989  DiagnosticsEngine &D = S.getDiagnostics();
1990
1991  DefaultPolicy.enableCheckUnreachable =
1992    isEnabled(D, warn_unreachable) ||
1993    isEnabled(D, warn_unreachable_break) ||
1994    isEnabled(D, warn_unreachable_return) ||
1995    isEnabled(D, warn_unreachable_loop_increment);
1996
1997  DefaultPolicy.enableThreadSafetyAnalysis =
1998    isEnabled(D, warn_double_lock);
1999
2000  DefaultPolicy.enableConsumedAnalysis =
2001    isEnabled(D, warn_use_in_invalid_state);
2002}
2003
2004static void flushDiagnostics(Sema &Sconst sema::FunctionScopeInfo *fscope) {
2005  for (const auto &D : fscope->PossiblyUnreachableDiags)
2006    S.Diag(D.Loc, D.PD);
2007}
2008
2009void clang::sema::
2010AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
2011                                     sema::FunctionScopeInfo *fscope,
2012                                     const Decl *Dconst BlockExpr *blkExpr) {
2013
2014  // We avoid doing analysis-based warnings when there are errors for
2015  // two reasons:
2016  // (1) The CFGs often can't be constructed (if the body is invalid), so
2017  //     don't bother trying.
2018  // (2) The code already has problems; running the analysis just takes more
2019  //     time.
2020  DiagnosticsEngine &Diags = S.getDiagnostics();
2021
2022  // Do not do any analysis if we are going to just ignore them.
2023  if (Diags.getIgnoreAllWarnings() ||
2024      (Diags.getSuppressSystemWarnings() &&
2025       S.SourceMgr.isInSystemHeader(D->getLocation())))
2026    return;
2027
2028  // For code in dependent contexts, we'll do this at instantiation time.
2029  if (cast<DeclContext>(D)->isDependentContext())
2030    return;
2031
2032  if (Diags.hasUncompilableErrorOccurred()) {
2033    // Flush out any possibly unreachable diagnostics.
2034    flushDiagnostics(Sfscope);
2035    return;
2036  }
2037
2038  const Stmt *Body = D->getBody();
2039  assert(Body);
2040
2041  // Construct the analysis context with the specified CFG build options.
2042  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptrD);
2043
2044  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2045  // explosion for destructors that can result and the compile time hit.
2046  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2047  AC.getCFGBuildOptions().AddEHEdges = false;
2048  AC.getCFGBuildOptions().AddInitializers = true;
2049  AC.getCFGBuildOptions().AddImplicitDtors = true;
2050  AC.getCFGBuildOptions().AddTemporaryDtors = true;
2051  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2052  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2053
2054  // Force that certain expressions appear as CFGElements in the CFG.  This
2055  // is used to speed up various analyses.
2056  // FIXME: This isn't the right factoring.  This is here for initial
2057  // prototyping, but we need a way for analyses to say what expressions they
2058  // expect to always be CFGElements and then fill in the BuildOptions
2059  // appropriately.  This is essentially a layering violation.
2060  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2061      P.enableConsumedAnalysis) {
2062    // Unreachable code analysis and thread safety require a linearized CFG.
2063    AC.getCFGBuildOptions().setAllAlwaysAdd();
2064  }
2065  else {
2066    AC.getCFGBuildOptions()
2067      .setAlwaysAdd(Stmt::BinaryOperatorClass)
2068      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2069      .setAlwaysAdd(Stmt::BlockExprClass)
2070      .setAlwaysAdd(Stmt::CStyleCastExprClass)
2071      .setAlwaysAdd(Stmt::DeclRefExprClass)
2072      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2073      .setAlwaysAdd(Stmt::UnaryOperatorClass)
2074      .setAlwaysAdd(Stmt::AttributedStmtClass);
2075  }
2076
2077  // Install the logical handler for -Wtautological-overlap-compare
2078  llvm::Optional<LogicalErrorHandlerLEH;
2079  if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2080                       D->getBeginLoc())) {
2081    LEH.emplace(S);
2082    AC.getCFGBuildOptions().Observer = &*LEH;
2083  }
2084
2085  // Emit delayed diagnostics.
2086  if (!fscope->PossiblyUnreachableDiags.empty()) {
2087    bool analyzed = false;
2088
2089    // Register the expressions with the CFGBuilder.
2090    for (const auto &D : fscope->PossiblyUnreachableDiags) {
2091      if (D.stmt)
2092        AC.registerForcedBlockExpression(D.stmt);
2093    }
2094
2095    if (AC.getCFG()) {
2096      analyzed = true;
2097      for (const auto &D : fscope->PossiblyUnreachableDiags) {
2098        bool processed = false;
2099        if (D.stmt) {
2100          const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
2101          CFGReverseBlockReachabilityAnalysis *cra =
2102              AC.getCFGReachablityAnalysis();
2103          // FIXME: We should be able to assert that block is non-null, but
2104          // the CFG analysis can skip potentially-evaluated expressions in
2105          // edge cases; see test/Sema/vla-2.c.
2106          if (block && cra) {
2107            // Can this block be reached from the entrance?
2108            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
2109              S.Diag(D.Loc, D.PD);
2110            processed = true;
2111          }
2112        }
2113        if (!processed) {
2114          // Emit the warning anyway if we cannot map to a basic block.
2115          S.Diag(D.Loc, D.PD);
2116        }
2117      }
2118    }
2119
2120    if (!analyzed)
2121      flushDiagnostics(Sfscope);
2122  }
2123
2124  // Warning: check missing 'return'
2125  if (P.enableCheckFallThrough) {
2126    const CheckFallThroughDiagnostics &CD =
2127        (isa<BlockDecl>(D)
2128             ? CheckFallThroughDiagnostics::MakeForBlock()
2129             : (isa<CXXMethodDecl>(D) &&
2130                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2131                cast<CXXMethodDecl>(D)->getParent()->isLambda())
2132                   ? CheckFallThroughDiagnostics::MakeForLambda()
2133                   : (fscope->isCoroutine()
2134                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2135                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
2136    CheckFallThroughForBody(SDBodyblkExprCDACfscope);
2137  }
2138
2139  // Warning: check for unreachable code
2140  if (P.enableCheckUnreachable) {
2141    // Only check for unreachable code on non-template instantiations.
2142    // Different template instantiations can effectively change the control-flow
2143    // and it is very difficult to prove that a snippet of code in a template
2144    // is unreachable for all instantiations.
2145    bool isTemplateInstantiation = false;
2146    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2147      isTemplateInstantiation = Function->isTemplateInstantiation();
2148    if (!isTemplateInstantiation)
2149      CheckUnreachable(SAC);
2150  }
2151
2152  // Check for thread safety violations
2153  if (P.enableThreadSafetyAnalysis) {
2154    SourceLocation FL = AC.getDecl()->getLocation();
2155    SourceLocation FEL = AC.getDecl()->getEndLoc();
2156    threadSafety::ThreadSafetyReporter Reporter(SFLFEL);
2157    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2158      Reporter.setIssueBetaWarnings(true);
2159    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2160      Reporter.setVerbose(true);
2161
2162    threadSafety::runThreadSafetyAnalysis(ACReporter,
2163                                          &S.ThreadSafetyDeclCache);
2164    Reporter.emitDiagnostics();
2165  }
2166
2167  // Check for violations of consumed properties.
2168  if (P.enableConsumedAnalysis) {
2169    consumed::ConsumedWarningsHandler WarningHandler(S);
2170    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2171    Analyzer.run(AC);
2172  }
2173
2174  if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2175      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2176      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc())) {
2177    if (CFG *cfg = AC.getCFG()) {
2178      UninitValsDiagReporter reporter(S);
2179      UninitVariablesAnalysisStats stats;
2180      std::memset(&stats, 0sizeof(UninitVariablesAnalysisStats));
2181      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfgAC,
2182                                        reporterstats);
2183
2184      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2185        ++NumUninitAnalysisFunctions;
2186        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2187        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2188        MaxUninitAnalysisVariablesPerFunction =
2189            std::max(MaxUninitAnalysisVariablesPerFunction,
2190                     stats.NumVariablesAnalyzed);
2191        MaxUninitAnalysisBlockVisitsPerFunction =
2192            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2193                     stats.NumBlockVisits);
2194      }
2195    }
2196  }
2197
2198  bool FallThroughDiagFull =
2199      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2200  bool FallThroughDiagPerFunction = !Diags.isIgnored(
2201      diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2202  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2203      fscope->HasFallthroughStmt) {
2204    DiagnoseSwitchLabelsFallthrough(SAC, !FallThroughDiagFull);
2205  }
2206
2207  if (S.getLangOpts().ObjCWeak &&
2208      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2209    diagnoseRepeatedUseOfWeak(SfscopeDAC.getParentMap());
2210
2211
2212  // Check for infinite self-recursion in functions
2213  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2214                       D->getBeginLoc())) {
2215    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2216      checkRecursiveFunction(SFDBodyAC);
2217    }
2218  }
2219
2220  // Check for throw out of non-throwing function.
2221  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2222    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2223      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2224        checkThrowInNonThrowingFunc(SFDAC);
2225
2226  // If none of the previous checks caused a CFG build, trigger one here
2227  // for -Wtautological-overlap-compare
2228  if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2229                       D->getBeginLoc())) {
2230    AC.getCFG();
2231  }
2232
2233  // Collect statistics about the CFG if it was built.
2234  if (S.CollectStats && AC.isCFGBuilt()) {
2235    ++NumFunctionsAnalyzed;
2236    if (CFG *cfg = AC.getCFG()) {
2237      // If we successfully built a CFG for this context, record some more
2238      // detail information about it.
2239      NumCFGBlocks += cfg->getNumBlockIDs();
2240      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2241                                         cfg->getNumBlockIDs());
2242    } else {
2243      ++NumFunctionsWithBadCFGs;
2244    }
2245  }
2246}
2247
2248void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2249  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2250
2251  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2252  unsigned AvgCFGBlocksPerFunction =
2253      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2254  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2255               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2256               << "  " << NumCFGBlocks << " CFG blocks built.\n"
2257               << "  " << AvgCFGBlocksPerFunction
2258               << " average CFG blocks per function.\n"
2259               << "  " << MaxCFGBlocksPerFunction
2260               << " max CFG blocks per function.\n";
2261
2262  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2263      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2264  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2265      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2266  llvm::errs() << NumUninitAnalysisFunctions
2267               << " functions analyzed for uninitialiazed variables\n"
2268               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2269               << "  " << AvgUninitVariablesPerFunction
2270               << " average variables per function.\n"
2271               << "  " << MaxUninitAnalysisVariablesPerFunction
2272               << " max variables per function.\n"
2273               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2274               << "  " << AvgUninitBlockVisitsPerFunction
2275               << " average block visits per function.\n"
2276               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2277               << " max block visits per function.\n";
2278}
2279
clang::sema::AnalysisBasedWarnings::IssueWarnings
clang::sema::AnalysisBasedWarnings::PrintStats