1 | // RUN: %clang_analyze_cc1 -analyzer-store=region -verify %s \ |
2 | // RUN: -analyzer-checker=core \ |
3 | // RUN: -analyzer-checker=alpha.deadcode.UnreachableCode \ |
4 | // RUN: -analyzer-checker=alpha.core.CastSize \ |
5 | // RUN: -analyzer-checker=unix.Malloc \ |
6 | // RUN: -analyzer-checker=debug.ExprInspection |
7 | |
8 | #include "Inputs/system-header-simulator.h" |
9 | |
10 | void clang_analyzer_eval(int); |
11 | |
12 | // Without -fms-compatibility, wchar_t isn't a builtin type. MSVC defines |
13 | // _WCHAR_T_DEFINED if wchar_t is available. Microsoft recommends that you use |
14 | // the builtin type: "Using the typedef version can cause portability |
15 | // problems", but we're ok here because we're not actually running anything. |
16 | // Also of note is this cryptic warning: "The wchar_t type is not supported |
17 | // when you compile C code". |
18 | // |
19 | // See the docs for more: |
20 | // https://msdn.microsoft.com/en-us/library/dh8che7s.aspx |
21 | #if !defined(_WCHAR_T_DEFINED) |
22 | // "Microsoft implements wchar_t as a two-byte unsigned value" |
23 | typedef unsigned short wchar_t; |
24 | #define _WCHAR_T_DEFINED |
25 | #endif // !defined(_WCHAR_T_DEFINED) |
26 | |
27 | typedef __typeof(sizeof(int)) size_t; |
28 | void *malloc(size_t); |
29 | void *alloca(size_t); |
30 | void *valloc(size_t); |
31 | void free(void *); |
32 | void *realloc(void *ptr, size_t size); |
33 | void *reallocf(void *ptr, size_t size); |
34 | void *calloc(size_t nmemb, size_t size); |
35 | char *strdup(const char *s); |
36 | wchar_t *wcsdup(const wchar_t *s); |
37 | char *strndup(const char *s, size_t n); |
38 | int memcmp(const void *s1, const void *s2, size_t n); |
39 | |
40 | // Windows variants |
41 | char *_strdup(const char *strSource); |
42 | wchar_t *_wcsdup(const wchar_t *strSource); |
43 | void *_alloca(size_t size); |
44 | |
45 | void myfoo(int *p); |
46 | void myfooint(int p); |
47 | char *fooRetPtr(); |
48 | |
49 | void f1() { |
50 | int *p = malloc(12); |
51 | return; // expected-warning{{Potential leak of memory pointed to by 'p'}} |
52 | } |
53 | |
54 | void f2() { |
55 | int *p = malloc(12); |
56 | free(p); |
57 | free(p); // expected-warning{{Attempt to free released memory}} |
58 | } |
59 | |
60 | void f2_realloc_0() { |
61 | int *p = malloc(12); |
62 | realloc(p,0); |
63 | realloc(p,0); // expected-warning{{Attempt to free released memory}} |
64 | } |
65 | |
66 | void f2_realloc_1() { |
67 | int *p = malloc(12); |
68 | int *q = realloc(p,0); // no-warning |
69 | } |
70 | |
71 | void reallocNotNullPtr(unsigned sizeIn) { |
72 | unsigned size = 12; |
73 | char *p = (char*)malloc(size); |
74 | if (p) { |
75 | char *q = (char*)realloc(p, sizeIn); |
76 | char x = *q; // expected-warning {{Potential leak of memory pointed to by 'q'}} |
77 | } |
78 | } |
79 | |
80 | void allocaTest() { |
81 | int *p = alloca(sizeof(int)); |
82 | } // no warn |
83 | |
84 | void winAllocaTest() { |
85 | int *p = _alloca(sizeof(int)); |
86 | } // no warn |
87 | |
88 | void allocaBuiltinTest() { |
89 | int *p = __builtin_alloca(sizeof(int)); |
90 | } // no warn |
91 | |
92 | int *realloctest1() { |
93 | int *q = malloc(12); |
94 | q = realloc(q, 20); |
95 | return q; // no warning - returning the allocated value |
96 | } |
97 | |
98 | // p should be freed if realloc fails. |
99 | void reallocFails() { |
100 | char *p = malloc(12); |
101 | char *r = realloc(p, 12+1); |
102 | if (!r) { |
103 | free(p); |
104 | } else { |
105 | free(r); |
106 | } |
107 | } |
108 | |
109 | void reallocSizeZero1() { |
110 | char *p = malloc(12); |
111 | char *r = realloc(p, 0); |
112 | if (!r) { |
113 | free(p); // expected-warning {{Attempt to free released memory}} |
114 | } else { |
115 | free(r); |
116 | } |
117 | } |
118 | |
119 | void reallocSizeZero2() { |
120 | char *p = malloc(12); |
121 | char *r = realloc(p, 0); |
122 | if (!r) { |
123 | free(p); // expected-warning {{Attempt to free released memory}} |
124 | } else { |
125 | free(r); |
126 | } |
127 | free(p); // expected-warning {{Attempt to free released memory}} |
128 | } |
129 | |
130 | void reallocSizeZero3() { |
131 | char *p = malloc(12); |
132 | char *r = realloc(p, 0); |
133 | free(r); |
134 | } |
135 | |
136 | void reallocSizeZero4() { |
137 | char *r = realloc(0, 0); |
138 | free(r); |
139 | } |
140 | |
141 | void reallocSizeZero5() { |
142 | char *r = realloc(0, 0); |
143 | } |
144 | |
145 | void reallocPtrZero1() { |
146 | char *r = realloc(0, 12); |
147 | } // expected-warning {{Potential leak of memory pointed to by 'r'}} |
148 | |
149 | void reallocPtrZero2() { |
150 | char *r = realloc(0, 12); |
151 | if (r) |
152 | free(r); |
153 | } |
154 | |
155 | void reallocPtrZero3() { |
156 | char *r = realloc(0, 12); |
157 | free(r); |
158 | } |
159 | |
160 | void reallocRadar6337483_1() { |
161 | char *buf = malloc(100); |
162 | buf = (char*)realloc(buf, 0x1000000); |
163 | if (!buf) { |
164 | return;// expected-warning {{Potential leak of memory pointed to by}} |
165 | } |
166 | free(buf); |
167 | } |
168 | |
169 | void reallocRadar6337483_2() { |
170 | char *buf = malloc(100); |
171 | char *buf2 = (char*)realloc(buf, 0x1000000); |
172 | if (!buf2) { |
173 | ; |
174 | } else { |
175 | free(buf2); |
176 | } |
177 | } // expected-warning {{Potential leak of memory pointed to by}} |
178 | |
179 | void reallocRadar6337483_3() { |
180 | char * buf = malloc(100); |
181 | char * tmp; |
182 | tmp = (char*)realloc(buf, 0x1000000); |
183 | if (!tmp) { |
184 | free(buf); |
185 | return; |
186 | } |
187 | buf = tmp; |
188 | free(buf); |
189 | } |
190 | |
191 | void reallocRadar6337483_4() { |
192 | char *buf = malloc(100); |
193 | char *buf2 = (char*)realloc(buf, 0x1000000); |
194 | if (!buf2) { |
195 | return; // expected-warning {{Potential leak of memory pointed to by}} |
196 | } else { |
197 | free(buf2); |
198 | } |
199 | } |
200 | |
201 | int *reallocfTest1() { |
202 | int *q = malloc(12); |
203 | q = reallocf(q, 20); |
204 | return q; // no warning - returning the allocated value |
205 | } |
206 | |
207 | void reallocfRadar6337483_4() { |
208 | char *buf = malloc(100); |
209 | char *buf2 = (char*)reallocf(buf, 0x1000000); |
210 | if (!buf2) { |
211 | return; // no warning - reallocf frees even on failure |
212 | } else { |
213 | free(buf2); |
214 | } |
215 | } |
216 | |
217 | void reallocfRadar6337483_3() { |
218 | char * buf = malloc(100); |
219 | char * tmp; |
220 | tmp = (char*)reallocf(buf, 0x1000000); |
221 | if (!tmp) { |
222 | free(buf); // expected-warning {{Attempt to free released memory}} |
223 | return; |
224 | } |
225 | buf = tmp; |
226 | free(buf); |
227 | } |
228 | |
229 | void reallocfPtrZero1() { |
230 | char *r = reallocf(0, 12); |
231 | } // expected-warning {{Potential leak of memory pointed to by}} |
232 | |
233 | //------------------- Check usage of zero-allocated memory --------------------- |
234 | void CheckUseZeroAllocatedNoWarn1() { |
235 | int *p = malloc(0); |
236 | free(p); // no warning |
237 | } |
238 | |
239 | void CheckUseZeroAllocatedNoWarn2() { |
240 | int *p = alloca(0); // no warning |
241 | } |
242 | |
243 | void CheckUseZeroWinAllocatedNoWarn2() { |
244 | int *p = _alloca(0); // no warning |
245 | } |
246 | |
247 | |
248 | void CheckUseZeroAllocatedNoWarn3() { |
249 | int *p = malloc(0); |
250 | int *q = realloc(p, 8); // no warning |
251 | free(q); |
252 | } |
253 | |
254 | void CheckUseZeroAllocatedNoWarn4() { |
255 | int *p = realloc(0, 8); |
256 | *p = 1; // no warning |
257 | free(p); |
258 | } |
259 | |
260 | void CheckUseZeroAllocated1() { |
261 | int *p = malloc(0); |
262 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
263 | free(p); |
264 | } |
265 | |
266 | char CheckUseZeroAllocated2() { |
267 | char *p = alloca(0); |
268 | return *p; // expected-warning {{Use of zero-allocated memory}} |
269 | } |
270 | |
271 | char CheckUseZeroWinAllocated2() { |
272 | char *p = _alloca(0); |
273 | return *p; // expected-warning {{Use of zero-allocated memory}} |
274 | } |
275 | |
276 | void UseZeroAllocated(int *p) { |
277 | if (p) |
278 | *p = 7; // expected-warning {{Use of zero-allocated memory}} |
279 | } |
280 | void CheckUseZeroAllocated3() { |
281 | int *p = malloc(0); |
282 | UseZeroAllocated(p); |
283 | } |
284 | |
285 | void f(char); |
286 | void CheckUseZeroAllocated4() { |
287 | char *p = valloc(0); |
288 | f(*p); // expected-warning {{Use of zero-allocated memory}} |
289 | free(p); |
290 | } |
291 | |
292 | void CheckUseZeroAllocated5() { |
293 | int *p = calloc(0, 2); |
294 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
295 | free(p); |
296 | } |
297 | |
298 | void CheckUseZeroAllocated6() { |
299 | int *p = calloc(2, 0); |
300 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
301 | free(p); |
302 | } |
303 | |
304 | void CheckUseZeroAllocated7() { |
305 | int *p = realloc(0, 0); |
306 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
307 | free(p); |
308 | } |
309 | |
310 | void CheckUseZeroAllocated8() { |
311 | int *p = malloc(8); |
312 | int *q = realloc(p, 0); |
313 | *q = 1; // expected-warning {{Use of zero-allocated memory}} |
314 | free(q); |
315 | } |
316 | |
317 | void CheckUseZeroAllocated9() { |
318 | int *p = realloc(0, 0); |
319 | int *q = realloc(p, 0); |
320 | *q = 1; // expected-warning {{Use of zero-allocated memory}} |
321 | free(q); |
322 | } |
323 | |
324 | void CheckUseZeroAllocatedPathNoWarn(_Bool b) { |
325 | int s = 0; |
326 | if (b) |
327 | s= 10; |
328 | |
329 | char *p = malloc(s); |
330 | |
331 | if (b) |
332 | *p = 1; // no warning |
333 | |
334 | free(p); |
335 | } |
336 | |
337 | void CheckUseZeroAllocatedPathWarn(_Bool b) { |
338 | int s = 10; |
339 | if (b) |
340 | s= 0; |
341 | |
342 | char *p = malloc(s); |
343 | |
344 | if (b) |
345 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
346 | |
347 | free(p); |
348 | } |
349 | |
350 | void CheckUseZeroReallocatedPathNoWarn(_Bool b) { |
351 | int s = 0; |
352 | if (b) |
353 | s= 10; |
354 | |
355 | char *p = malloc(8); |
356 | char *q = realloc(p, s); |
357 | |
358 | if (b) |
359 | *q = 1; // no warning |
360 | |
361 | free(q); |
362 | } |
363 | |
364 | void CheckUseZeroReallocatedPathWarn(_Bool b) { |
365 | int s = 10; |
366 | if (b) |
367 | s= 0; |
368 | |
369 | char *p = malloc(8); |
370 | char *q = realloc(p, s); |
371 | |
372 | if (b) |
373 | *q = 1; // expected-warning {{Use of zero-allocated memory}} |
374 | |
375 | free(q); |
376 | } |
377 | |
378 | // This case tests that storing malloc'ed memory to a static variable which is |
379 | // then returned is not leaked. In the absence of known contracts for functions |
380 | // or inter-procedural analysis, this is a conservative answer. |
381 | int *f3() { |
382 | static int *p = 0; |
383 | p = malloc(12); |
384 | return p; // no-warning |
385 | } |
386 | |
387 | // This case tests that storing malloc'ed memory to a static global variable |
388 | // which is then returned is not leaked. In the absence of known contracts for |
389 | // functions or inter-procedural analysis, this is a conservative answer. |
390 | static int *p_f4 = 0; |
391 | int *f4() { |
392 | p_f4 = malloc(12); |
393 | return p_f4; // no-warning |
394 | } |
395 | |
396 | int *f5() { |
397 | int *q = malloc(12); |
398 | q = realloc(q, 20); |
399 | return q; // no-warning |
400 | } |
401 | |
402 | void f6() { |
403 | int *p = malloc(12); |
404 | if (!p) |
405 | return; // no-warning |
406 | else |
407 | free(p); |
408 | } |
409 | |
410 | void f6_realloc() { |
411 | int *p = malloc(12); |
412 | if (!p) |
413 | return; // no-warning |
414 | else |
415 | realloc(p,0); |
416 | } |
417 | |
418 | |
419 | char *doit2(); |
420 | void pr6069() { |
421 | char *buf = doit2(); |
422 | free(buf); |
423 | } |
424 | |
425 | void pr6293() { |
426 | free(0); |
427 | } |
428 | |
429 | void f7() { |
430 | char *x = (char*) malloc(4); |
431 | free(x); |
432 | x[0] = 'a'; // expected-warning{{Use of memory after it is freed}} |
433 | } |
434 | |
435 | void f8() { |
436 | char *x = (char*) malloc(4); |
437 | free(x); |
438 | char *y = strndup(x, 4); // expected-warning{{Use of memory after it is freed}} |
439 | } |
440 | |
441 | void f7_realloc() { |
442 | char *x = (char*) malloc(4); |
443 | realloc(x,0); |
444 | x[0] = 'a'; // expected-warning{{Use of memory after it is freed}} |
445 | } |
446 | |
447 | void PR6123() { |
448 | int *x = malloc(11); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
449 | } |
450 | |
451 | void PR7217() { |
452 | int *buf = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
453 | buf[1] = 'c'; // not crash |
454 | } |
455 | |
456 | void cast_emtpy_struct() { |
457 | struct st { |
458 | }; |
459 | |
460 | struct st *s = malloc(sizeof(struct st)); // no-warning |
461 | free(s); |
462 | } |
463 | |
464 | void cast_struct_1() { |
465 | struct st { |
466 | int i[100]; |
467 | char j[]; |
468 | }; |
469 | |
470 | struct st *s = malloc(sizeof(struct st)); // no-warning |
471 | free(s); |
472 | } |
473 | |
474 | void cast_struct_2() { |
475 | struct st { |
476 | int i[100]; |
477 | char j[0]; |
478 | }; |
479 | |
480 | struct st *s = malloc(sizeof(struct st)); // no-warning |
481 | free(s); |
482 | } |
483 | |
484 | void cast_struct_3() { |
485 | struct st { |
486 | int i[100]; |
487 | char j[1]; |
488 | }; |
489 | |
490 | struct st *s = malloc(sizeof(struct st)); // no-warning |
491 | free(s); |
492 | } |
493 | |
494 | void cast_struct_4() { |
495 | struct st { |
496 | int i[100]; |
497 | char j[2]; |
498 | }; |
499 | |
500 | struct st *s = malloc(sizeof(struct st)); // no-warning |
501 | free(s); |
502 | } |
503 | |
504 | void cast_struct_5() { |
505 | struct st { |
506 | char i[200]; |
507 | char j[1]; |
508 | }; |
509 | |
510 | struct st *s = malloc(sizeof(struct st) - sizeof(char)); // no-warning |
511 | free(s); |
512 | } |
513 | |
514 | void cast_struct_warn_1() { |
515 | struct st { |
516 | int i[100]; |
517 | char j[2]; |
518 | }; |
519 | |
520 | struct st *s = malloc(sizeof(struct st) + 2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
521 | free(s); |
522 | } |
523 | |
524 | void cast_struct_warn_2() { |
525 | struct st { |
526 | int i[100]; |
527 | char j[2]; |
528 | }; |
529 | |
530 | struct st *s = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
531 | free(s); |
532 | } |
533 | |
534 | void cast_struct_flex_array_1() { |
535 | struct st { |
536 | int i[100]; |
537 | char j[]; |
538 | }; |
539 | |
540 | struct st *s = malloc(sizeof(struct st) + 3); // no-warning |
541 | free(s); |
542 | } |
543 | |
544 | void cast_struct_flex_array_2() { |
545 | struct st { |
546 | int i[100]; |
547 | char j[0]; |
548 | }; |
549 | |
550 | struct st *s = malloc(sizeof(struct st) + 3); // no-warning |
551 | free(s); |
552 | } |
553 | |
554 | void cast_struct_flex_array_3() { |
555 | struct st { |
556 | int i[100]; |
557 | char j[1]; |
558 | }; |
559 | |
560 | struct st *s = malloc(sizeof(struct st) + 3); // no-warning |
561 | free(s); |
562 | } |
563 | |
564 | void cast_struct_flex_array_4() { |
565 | struct foo { |
566 | char f[32]; |
567 | }; |
568 | struct st { |
569 | char i[100]; |
570 | struct foo data[]; |
571 | }; |
572 | |
573 | struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning |
574 | free(s); |
575 | } |
576 | |
577 | void cast_struct_flex_array_5() { |
578 | struct foo { |
579 | char f[32]; |
580 | }; |
581 | struct st { |
582 | char i[100]; |
583 | struct foo data[0]; |
584 | }; |
585 | |
586 | struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning |
587 | free(s); |
588 | } |
589 | |
590 | void cast_struct_flex_array_6() { |
591 | struct foo { |
592 | char f[32]; |
593 | }; |
594 | struct st { |
595 | char i[100]; |
596 | struct foo data[1]; |
597 | }; |
598 | |
599 | struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning |
600 | free(s); |
601 | } |
602 | |
603 | void cast_struct_flex_array_warn_1() { |
604 | struct foo { |
605 | char f[32]; |
606 | }; |
607 | struct st { |
608 | char i[100]; |
609 | struct foo data[]; |
610 | }; |
611 | |
612 | struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
613 | free(s); |
614 | } |
615 | |
616 | void cast_struct_flex_array_warn_2() { |
617 | struct foo { |
618 | char f[32]; |
619 | }; |
620 | struct st { |
621 | char i[100]; |
622 | struct foo data[0]; |
623 | }; |
624 | |
625 | struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
626 | free(s); |
627 | } |
628 | |
629 | void cast_struct_flex_array_warn_3() { |
630 | struct foo { |
631 | char f[32]; |
632 | }; |
633 | struct st { |
634 | char i[100]; |
635 | struct foo data[1]; |
636 | }; |
637 | |
638 | struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
639 | free(s); |
640 | } |
641 | |
642 | void cast_struct_flex_array_warn_4() { |
643 | struct st { |
644 | int i[100]; |
645 | int j[]; |
646 | }; |
647 | |
648 | struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
649 | free(s); |
650 | } |
651 | |
652 | void cast_struct_flex_array_warn_5() { |
653 | struct st { |
654 | int i[100]; |
655 | int j[0]; |
656 | }; |
657 | |
658 | struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
659 | free(s); |
660 | } |
661 | |
662 | void cast_struct_flex_array_warn_6() { |
663 | struct st { |
664 | int i[100]; |
665 | int j[1]; |
666 | }; |
667 | |
668 | struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
669 | free(s); |
670 | } |
671 | |
672 | void mallocCastToVoid() { |
673 | void *p = malloc(2); |
674 | const void *cp = p; // not crash |
675 | free(p); |
676 | } |
677 | |
678 | void mallocCastToFP() { |
679 | void *p = malloc(2); |
680 | void (*fp)() = p; // not crash |
681 | free(p); |
682 | } |
683 | |
684 | // This tests that malloc() buffers are undefined by default |
685 | char mallocGarbage () { |
686 | char *buf = malloc(2); |
687 | char result = buf[1]; // expected-warning{{undefined}} |
688 | free(buf); |
689 | return result; |
690 | } |
691 | |
692 | // This tests that calloc() buffers need to be freed |
693 | void callocNoFree () { |
694 | char *buf = calloc(2,2); |
695 | return; // expected-warning{{Potential leak of memory pointed to by 'buf'}} |
696 | } |
697 | |
698 | // These test that calloc() buffers are zeroed by default |
699 | char callocZeroesGood () { |
700 | char *buf = calloc(2,2); |
701 | char result = buf[3]; // no-warning |
702 | if (buf[1] == 0) { |
703 | free(buf); |
704 | } |
705 | return result; // no-warning |
706 | } |
707 | |
708 | char callocZeroesBad () { |
709 | char *buf = calloc(2,2); |
710 | char result = buf[3]; // no-warning |
711 | if (buf[1] != 0) { |
712 | free(buf); // expected-warning{{never executed}} |
713 | } |
714 | return result; // expected-warning{{Potential leak of memory pointed to by 'buf'}} |
715 | } |
716 | |
717 | void nullFree() { |
718 | int *p = 0; |
719 | free(p); // no warning - a nop |
720 | } |
721 | |
722 | void paramFree(int *p) { |
723 | myfoo(p); |
724 | free(p); // no warning |
725 | myfoo(p); // expected-warning {{Use of memory after it is freed}} |
726 | } |
727 | |
728 | int* mallocEscapeRet() { |
729 | int *p = malloc(12); |
730 | return p; // no warning |
731 | } |
732 | |
733 | void mallocEscapeFoo() { |
734 | int *p = malloc(12); |
735 | myfoo(p); |
736 | return; // no warning |
737 | } |
738 | |
739 | void mallocEscapeFree() { |
740 | int *p = malloc(12); |
741 | myfoo(p); |
742 | free(p); |
743 | } |
744 | |
745 | void mallocEscapeFreeFree() { |
746 | int *p = malloc(12); |
747 | myfoo(p); |
748 | free(p); |
749 | free(p); // expected-warning{{Attempt to free released memory}} |
750 | } |
751 | |
752 | void mallocEscapeFreeUse() { |
753 | int *p = malloc(12); |
754 | myfoo(p); |
755 | free(p); |
756 | myfoo(p); // expected-warning{{Use of memory after it is freed}} |
757 | } |
758 | |
759 | int *myalloc(); |
760 | void myalloc2(int **p); |
761 | |
762 | void mallocEscapeFreeCustomAlloc() { |
763 | int *p = malloc(12); |
764 | myfoo(p); |
765 | free(p); |
766 | p = myalloc(); |
767 | free(p); // no warning |
768 | } |
769 | |
770 | void mallocEscapeFreeCustomAlloc2() { |
771 | int *p = malloc(12); |
772 | myfoo(p); |
773 | free(p); |
774 | myalloc2(&p); |
775 | free(p); // no warning |
776 | } |
777 | |
778 | void mallocBindFreeUse() { |
779 | int *x = malloc(12); |
780 | int *y = x; |
781 | free(y); |
782 | myfoo(x); // expected-warning{{Use of memory after it is freed}} |
783 | } |
784 | |
785 | void mallocEscapeMalloc() { |
786 | int *p = malloc(12); |
787 | myfoo(p); |
788 | p = malloc(12); |
789 | } // expected-warning{{Potential leak of memory pointed to by}} |
790 | |
791 | void mallocMalloc() { |
792 | int *p = malloc(12); |
793 | p = malloc(12); |
794 | } // expected-warning {{Potential leak of memory pointed to by}} |
795 | |
796 | void mallocFreeMalloc() { |
797 | int *p = malloc(12); |
798 | free(p); |
799 | p = malloc(12); |
800 | free(p); |
801 | } |
802 | |
803 | void mallocFreeUse_params() { |
804 | int *p = malloc(12); |
805 | free(p); |
806 | myfoo(p); //expected-warning{{Use of memory after it is freed}} |
807 | } |
808 | |
809 | void mallocFreeUse_params2() { |
810 | int *p = malloc(12); |
811 | free(p); |
812 | myfooint(*p); //expected-warning{{Use of memory after it is freed}} |
813 | } |
814 | |
815 | void mallocFailedOrNot() { |
816 | int *p = malloc(12); |
817 | if (!p) |
818 | free(p); |
819 | else |
820 | free(p); |
821 | } |
822 | |
823 | struct StructWithInt { |
824 | int g; |
825 | }; |
826 | |
827 | int *mallocReturnFreed() { |
828 | int *p = malloc(12); |
829 | free(p); |
830 | return p; // expected-warning {{Use of memory after it is freed}} |
831 | } |
832 | |
833 | int useAfterFreeStruct() { |
834 | struct StructWithInt *px= malloc(sizeof(struct StructWithInt)); |
835 | px->g = 5; |
836 | free(px); |
837 | return px->g; // expected-warning {{Use of memory after it is freed}} |
838 | } |
839 | |
840 | void nonSymbolAsFirstArg(int *pp, struct StructWithInt *p); |
841 | |
842 | void mallocEscapeFooNonSymbolArg() { |
843 | struct StructWithInt *p = malloc(sizeof(struct StructWithInt)); |
844 | nonSymbolAsFirstArg(&p->g, p); |
845 | return; // no warning |
846 | } |
847 | |
848 | void mallocFailedOrNotLeak() { |
849 | int *p = malloc(12); |
850 | if (p == 0) |
851 | return; // no warning |
852 | else |
853 | return; // expected-warning {{Potential leak of memory pointed to by}} |
854 | } |
855 | |
856 | void mallocAssignment() { |
857 | char *p = malloc(12); |
858 | p = fooRetPtr(); |
859 | } // expected-warning {{leak}} |
860 | |
861 | int vallocTest() { |
862 | char *mem = valloc(12); |
863 | return 0; // expected-warning {{Potential leak of memory pointed to by}} |
864 | } |
865 | |
866 | void vallocEscapeFreeUse() { |
867 | int *p = valloc(12); |
868 | myfoo(p); |
869 | free(p); |
870 | myfoo(p); // expected-warning{{Use of memory after it is freed}} |
871 | } |
872 | |
873 | int *Gl; |
874 | struct GlStTy { |
875 | int *x; |
876 | }; |
877 | |
878 | struct GlStTy GlS = {0}; |
879 | |
880 | void GlobalFree() { |
881 | free(Gl); |
882 | } |
883 | |
884 | void GlobalMalloc() { |
885 | Gl = malloc(12); |
886 | } |
887 | |
888 | void GlobalStructMalloc() { |
889 | int *a = malloc(12); |
890 | GlS.x = a; |
891 | } |
892 | |
893 | void GlobalStructMallocFree() { |
894 | int *a = malloc(12); |
895 | GlS.x = a; |
896 | free(GlS.x); |
897 | } |
898 | |
899 | char *ArrayG[12]; |
900 | |
901 | void globalArrayTest() { |
902 | char *p = (char*)malloc(12); |
903 | ArrayG[0] = p; |
904 | } |
905 | |
906 | // Make sure that we properly handle a pointer stored into a local struct/array. |
907 | typedef struct _StructWithPtr { |
908 | int *memP; |
909 | } StructWithPtr; |
910 | |
911 | static StructWithPtr arrOfStructs[10]; |
912 | |
913 | void testMalloc() { |
914 | int *x = malloc(12); |
915 | StructWithPtr St; |
916 | St.memP = x; |
917 | arrOfStructs[0] = St; // no-warning |
918 | } |
919 | |
920 | StructWithPtr testMalloc2() { |
921 | int *x = malloc(12); |
922 | StructWithPtr St; |
923 | St.memP = x; |
924 | return St; // no-warning |
925 | } |
926 | |
927 | int *testMalloc3() { |
928 | int *x = malloc(12); |
929 | int *y = x; |
930 | return y; // no-warning |
931 | } |
932 | |
933 | void testStructLeak() { |
934 | StructWithPtr St; |
935 | St.memP = malloc(12); |
936 | return; // expected-warning {{Potential leak of memory pointed to by 'St.memP'}} |
937 | } |
938 | |
939 | void testElemRegion1() { |
940 | char *x = (void*)malloc(2); |
941 | int *ix = (int*)x; |
942 | free(&(x[0])); |
943 | } |
944 | |
945 | void testElemRegion2(int **pp) { |
946 | int *p = malloc(12); |
947 | *pp = p; |
948 | free(pp[0]); |
949 | } |
950 | |
951 | void testElemRegion3(int **pp) { |
952 | int *p = malloc(12); |
953 | *pp = p; |
954 | free(*pp); |
955 | } |
956 | // Region escape testing. |
957 | |
958 | unsigned takePtrToPtr(int **p); |
959 | void PassTheAddrOfAllocatedData(int f) { |
960 | int *p = malloc(12); |
961 | // We don't know what happens after the call. Should stop tracking here. |
962 | if (takePtrToPtr(&p)) |
963 | f++; |
964 | free(p); // no warning |
965 | } |
966 | |
967 | struct X { |
968 | int *p; |
969 | }; |
970 | unsigned takePtrToStruct(struct X *s); |
971 | int ** foo2(int *g, int f) { |
972 | int *p = malloc(12); |
973 | struct X *px= malloc(sizeof(struct X)); |
974 | px->p = p; |
975 | // We don't know what happens after this call. Should not track px nor p. |
976 | if (takePtrToStruct(px)) |
977 | f++; |
978 | free(p); |
979 | return 0; |
980 | } |
981 | |
982 | struct X* RegInvalidationDetect1(struct X *s2) { |
983 | struct X *px= malloc(sizeof(struct X)); |
984 | px->p = 0; |
985 | px = s2; |
986 | return px; // expected-warning {{Potential leak of memory pointed to by}} |
987 | } |
988 | |
989 | struct X* RegInvalidationGiveUp1() { |
990 | int *p = malloc(12); |
991 | struct X *px= malloc(sizeof(struct X)); |
992 | px->p = p; |
993 | return px; |
994 | } |
995 | |
996 | int **RegInvalidationDetect2(int **pp) { |
997 | int *p = malloc(12); |
998 | pp = &p; |
999 | pp++; |
1000 | return 0;// expected-warning {{Potential leak of memory pointed to by}} |
1001 | } |
1002 | |
1003 | extern void exit(int) __attribute__ ((__noreturn__)); |
1004 | void mallocExit(int *g) { |
1005 | struct xx *p = malloc(12); |
1006 | if (g != 0) |
1007 | exit(1); |
1008 | free(p); |
1009 | return; |
1010 | } |
1011 | |
1012 | extern void __assert_fail (__const char *__assertion, __const char *__file, |
1013 | unsigned int __line, __const char *__function) |
1014 | __attribute__ ((__noreturn__)); |
1015 | #define assert(expr) \ |
1016 | ((expr) ? (void)(0) : __assert_fail (#expr, __FILE__, __LINE__, __func__)) |
1017 | void mallocAssert(int *g) { |
1018 | struct xx *p = malloc(12); |
1019 | |
1020 | assert(g != 0); |
1021 | free(p); |
1022 | return; |
1023 | } |
1024 | |
1025 | void doNotInvalidateWhenPassedToSystemCalls(char *s) { |
1026 | char *p = malloc(12); |
1027 | strlen(p); |
1028 | strcpy(p, s); |
1029 | strcpy(s, p); |
1030 | strcpy(p, p); |
1031 | memcpy(p, s, 1); |
1032 | memcpy(s, p, 1); |
1033 | memcpy(p, p, 1); |
1034 | } // expected-warning {{leak}} |
1035 | |
1036 | // Treat source buffer contents as escaped. |
1037 | void escapeSourceContents(char *s) { |
1038 | char *p = malloc(12); |
1039 | memcpy(s, &p, 12); // no warning |
1040 | |
1041 | void *p1 = malloc(7); |
1042 | char *a; |
1043 | memcpy(&a, &p1, sizeof a); |
1044 | // FIXME: No warning due to limitations imposed by current modelling of |
1045 | // 'memcpy' (regions metadata is not copied). |
1046 | |
1047 | int *ptrs[2]; |
1048 | int *allocated = (int *)malloc(4); |
1049 | memcpy(&ptrs[0], &allocated, sizeof(int *)); |
1050 | // FIXME: No warning due to limitations imposed by current modelling of |
1051 | // 'memcpy' (regions metadata is not copied). |
1052 | } |
1053 | |
1054 | void invalidateDestinationContents() { |
1055 | int *null = 0; |
1056 | int *p = (int *)malloc(4); |
1057 | memcpy(&p, &null, sizeof(int *)); |
1058 | |
1059 | int *ptrs1[2]; // expected-warning {{Potential leak of memory pointed to by}} |
1060 | ptrs1[0] = (int *)malloc(4); |
1061 | memcpy(ptrs1, &null, sizeof(int *)); |
1062 | |
1063 | int *ptrs2[2]; // expected-warning {{Potential memory leak}} |
1064 | ptrs2[0] = (int *)malloc(4); |
1065 | memcpy(&ptrs2[1], &null, sizeof(int *)); |
1066 | |
1067 | int *ptrs3[2]; // expected-warning {{Potential memory leak}} |
1068 | ptrs3[0] = (int *)malloc(4); |
1069 | memcpy(&ptrs3[0], &null, sizeof(int *)); |
1070 | } // expected-warning {{Potential memory leak}} |
1071 | |
1072 | // Rely on the CString checker evaluation of the strcpy API to convey that the result of strcpy is equal to p. |
1073 | void symbolLostWithStrcpy(char *s) { |
1074 | char *p = malloc(12); |
1075 | p = strcpy(p, s); |
1076 | free(p); |
1077 | } |
1078 | |
1079 | |
1080 | // The same test as the one above, but with what is actually generated on a mac. |
1081 | static __inline char * |
1082 | __inline_strcpy_chk (char *restrict __dest, const char *restrict __src) |
1083 | { |
1084 | return __builtin___strcpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1)); |
1085 | } |
1086 | |
1087 | void symbolLostWithStrcpy_InlineStrcpyVersion(char *s) { |
1088 | char *p = malloc(12); |
1089 | p = ((__builtin_object_size (p, 0) != (size_t) -1) ? __builtin___strcpy_chk (p, s, __builtin_object_size (p, 2 > 1)) : __inline_strcpy_chk (p, s)); |
1090 | free(p); |
1091 | } |
1092 | |
1093 | // Here we are returning a pointer one past the allocated value. An idiom which |
1094 | // can be used for implementing special malloc. The correct uses of this might |
1095 | // be rare enough so that we could keep this as a warning. |
1096 | static void *specialMalloc(int n){ |
1097 | int *p; |
1098 | p = malloc( n+8 ); |
1099 | if( p ){ |
1100 | p[0] = n; |
1101 | p++; |
1102 | } |
1103 | return p; |
1104 | } |
1105 | |
1106 | // Potentially, the user could free the struct by performing pointer arithmetic on the return value. |
1107 | // This is a variation of the specialMalloc issue, though probably would be more rare in correct code. |
1108 | int *specialMallocWithStruct() { |
1109 | struct StructWithInt *px= malloc(sizeof(struct StructWithInt)); |
1110 | return &(px->g); |
1111 | } |
1112 | |
1113 | // Test various allocation/deallocation functions. |
1114 | void testStrdup(const char *s, unsigned validIndex) { |
1115 | char *s2 = strdup(s); |
1116 | s2[validIndex + 1] = 'b'; |
1117 | } // expected-warning {{Potential leak of memory pointed to by}} |
1118 | |
1119 | void testWinStrdup(const char *s, unsigned validIndex) { |
1120 | char *s2 = _strdup(s); |
1121 | s2[validIndex + 1] = 'b'; |
1122 | } // expected-warning {{Potential leak of memory pointed to by}} |
1123 | |
1124 | void testWcsdup(const wchar_t *s, unsigned validIndex) { |
1125 | wchar_t *s2 = wcsdup(s); |
1126 | s2[validIndex + 1] = 'b'; |
1127 | } // expected-warning {{Potential leak of memory pointed to by}} |
1128 | |
1129 | void testWinWcsdup(const wchar_t *s, unsigned validIndex) { |
1130 | wchar_t *s2 = _wcsdup(s); |
1131 | s2[validIndex + 1] = 'b'; |
1132 | } // expected-warning {{Potential leak of memory pointed to by}} |
1133 | |
1134 | int testStrndup(const char *s, unsigned validIndex, unsigned size) { |
1135 | char *s2 = strndup(s, size); |
1136 | s2 [validIndex + 1] = 'b'; |
1137 | if (s2[validIndex] != 'a') |
1138 | return 0; |
1139 | else |
1140 | return 1;// expected-warning {{Potential leak of memory pointed to by}} |
1141 | } |
1142 | |
1143 | void testStrdupContentIsDefined(const char *s, unsigned validIndex) { |
1144 | char *s2 = strdup(s); |
1145 | char result = s2[1];// no warning |
1146 | free(s2); |
1147 | } |
1148 | |
1149 | void testWinStrdupContentIsDefined(const char *s, unsigned validIndex) { |
1150 | char *s2 = _strdup(s); |
1151 | char result = s2[1];// no warning |
1152 | free(s2); |
1153 | } |
1154 | |
1155 | void testWcsdupContentIsDefined(const wchar_t *s, unsigned validIndex) { |
1156 | wchar_t *s2 = wcsdup(s); |
1157 | wchar_t result = s2[1];// no warning |
1158 | free(s2); |
1159 | } |
1160 | |
1161 | void testWinWcsdupContentIsDefined(const wchar_t *s, unsigned validIndex) { |
1162 | wchar_t *s2 = _wcsdup(s); |
1163 | wchar_t result = s2[1];// no warning |
1164 | free(s2); |
1165 | } |
1166 | |
1167 | // ---------------------------------------------------------------------------- |
1168 | // Test the system library functions to which the pointer can escape. |
1169 | // This tests false positive suppression. |
1170 | |
1171 | // For now, we assume memory passed to pthread_specific escapes. |
1172 | // TODO: We could check that if a new pthread binding is set, the existing |
1173 | // binding must be freed; otherwise, a memory leak can occur. |
1174 | void testPthereadSpecificEscape(pthread_key_t key) { |
1175 | void *buf = malloc(12); |
1176 | pthread_setspecific(key, buf); // no warning |
1177 | } |
1178 | |
1179 | // PR12101: Test funopen(). |
1180 | static int releasePtr(void *_ctx) { |
1181 | free(_ctx); |
1182 | return 0; |
1183 | } |
1184 | FILE *useFunOpen() { |
1185 | void *ctx = malloc(sizeof(int)); |
1186 | FILE *f = funopen(ctx, 0, 0, 0, releasePtr); // no warning |
1187 | if (f == 0) { |
1188 | free(ctx); |
1189 | } |
1190 | return f; |
1191 | } |
1192 | FILE *useFunOpenNoReleaseFunction() { |
1193 | void *ctx = malloc(sizeof(int)); |
1194 | FILE *f = funopen(ctx, 0, 0, 0, 0); |
1195 | if (f == 0) { |
1196 | free(ctx); |
1197 | } |
1198 | return f; // expected-warning{{leak}} |
1199 | } |
1200 | |
1201 | static int readNothing(void *_ctx, char *buf, int size) { |
1202 | return 0; |
1203 | } |
1204 | FILE *useFunOpenReadNoRelease() { |
1205 | void *ctx = malloc(sizeof(int)); |
1206 | FILE *f = funopen(ctx, readNothing, 0, 0, 0); |
1207 | if (f == 0) { |
1208 | free(ctx); |
1209 | } |
1210 | return f; // expected-warning{{leak}} |
1211 | } |
1212 | |
1213 | // Test setbuf, setvbuf. |
1214 | int my_main_no_warning() { |
1215 | char *p = malloc(100); |
1216 | setvbuf(stdout, p, 0, 100); |
1217 | return 0; |
1218 | } |
1219 | int my_main_no_warning2() { |
1220 | char *p = malloc(100); |
1221 | setbuf(__stdoutp, p); |
1222 | return 0; |
1223 | } |
1224 | int my_main_warn(FILE *f) { |
1225 | char *p = malloc(100); |
1226 | setvbuf(f, p, 0, 100); |
1227 | return 0;// expected-warning {{leak}} |
1228 | } |
1229 | |
1230 | // <rdar://problem/10978247>. |
1231 | // some people use stack allocated memory as an optimization to avoid |
1232 | // a heap allocation for small work sizes. This tests the analyzer's |
1233 | // understanding that the malloc'ed memory is not the same as stackBuffer. |
1234 | void radar10978247(int myValueSize) { |
1235 | char stackBuffer[128]; |
1236 | char *buffer; |
1237 | |
1238 | if (myValueSize <= sizeof(stackBuffer)) |
1239 | buffer = stackBuffer; |
1240 | else |
1241 | buffer = malloc(myValueSize); |
1242 | |
1243 | // do stuff with the buffer |
1244 | if (buffer != stackBuffer) |
1245 | free(buffer); |
1246 | } |
1247 | |
1248 | void radar10978247_positive(int myValueSize) { |
1249 | char stackBuffer[128]; |
1250 | char *buffer; |
1251 | |
1252 | if (myValueSize <= sizeof(stackBuffer)) |
1253 | buffer = stackBuffer; |
1254 | else |
1255 | buffer = malloc(myValueSize); |
1256 | |
1257 | // do stuff with the buffer |
1258 | if (buffer == stackBuffer) |
1259 | return; |
1260 | else |
1261 | return; // expected-warning {{leak}} |
1262 | } |
1263 | // <rdar://problem/11269741> Previously this triggered a false positive |
1264 | // because malloc() is known to return uninitialized memory and the binding |
1265 | // of 'o' to 'p->n' was not getting propertly handled. Now we report a leak. |
1266 | struct rdar11269741_a_t { |
1267 | struct rdar11269741_b_t { |
1268 | int m; |
1269 | } n; |
1270 | }; |
1271 | |
1272 | int rdar11269741(struct rdar11269741_b_t o) |
1273 | { |
1274 | struct rdar11269741_a_t *p = (struct rdar11269741_a_t *) malloc(sizeof(*p)); |
1275 | p->n = o; |
1276 | return p->n.m; // expected-warning {{leak}} |
1277 | } |
1278 | |
1279 | // Pointer arithmetic, returning an ElementRegion. |
1280 | void *radar11329382(unsigned bl) { |
1281 | void *ptr = malloc (16); |
1282 | ptr = ptr + (2 - bl); |
1283 | return ptr; // no warning |
1284 | } |
1285 | |
1286 | void __assert_rtn(const char *, const char *, int, const char *) __attribute__((__noreturn__)); |
1287 | int strcmp(const char *, const char *); |
1288 | char *a (void); |
1289 | void radar11270219(void) { |
1290 | char *x = a(), *y = a(); |
1291 | (__builtin_expect(!(x && y), 0) ? __assert_rtn(__func__, "/Users/zaks/tmp/ex.c", 24, "x && y") : (void)0); |
1292 | strcmp(x, y); // no warning |
1293 | } |
1294 | |
1295 | void radar_11358224_test_double_assign_ints_positive_2() |
1296 | { |
1297 | void *ptr = malloc(16); |
1298 | ptr = ptr; |
1299 | } // expected-warning {{leak}} |
1300 | |
1301 | // Assume that functions which take a function pointer can free memory even if |
1302 | // they are defined in system headers and take the const pointer to the |
1303 | // allocated memory. (radar://11160612) |
1304 | int const_ptr_and_callback(int, const char*, int n, void(*)(void*)); |
1305 | void r11160612_1() { |
1306 | char *x = malloc(12); |
1307 | const_ptr_and_callback(0, x, 12, free); // no - warning |
1308 | } |
1309 | |
1310 | // Null is passed as callback. |
1311 | void r11160612_2() { |
1312 | char *x = malloc(12); |
1313 | const_ptr_and_callback(0, x, 12, 0); |
1314 | } // expected-warning {{leak}} |
1315 | |
1316 | // Callback is passed to a function defined in a system header. |
1317 | void r11160612_4() { |
1318 | char *x = malloc(12); |
1319 | sqlite3_bind_text_my(0, x, 12, free); // no - warning |
1320 | } |
1321 | |
1322 | // Passing callbacks in a struct. |
1323 | void r11160612_5(StWithCallback St) { |
1324 | void *x = malloc(12); |
1325 | dealocateMemWhenDoneByVal(x, St); |
1326 | } |
1327 | void r11160612_6(StWithCallback St) { |
1328 | void *x = malloc(12); |
1329 | dealocateMemWhenDoneByRef(&St, x); |
1330 | } |
1331 | |
1332 | int mySub(int, int); |
1333 | int myAdd(int, int); |
1334 | int fPtr(unsigned cond, int x) { |
1335 | return (cond ? mySub : myAdd)(x, x); |
1336 | } |
1337 | |
1338 | // Test anti-aliasing. |
1339 | |
1340 | void dependsOnValueOfPtr(int *g, unsigned f) { |
1341 | int *p; |
1342 | |
1343 | if (f) { |
1344 | p = g; |
1345 | } else { |
1346 | p = malloc(12); |
1347 | } |
1348 | |
1349 | if (p != g) |
1350 | free(p); |
1351 | else |
1352 | return; // no warning |
1353 | return; |
1354 | } |
1355 | |
1356 | int CMPRegionHeapToStack() { |
1357 | int x = 0; |
1358 | int *x1 = malloc(8); |
1359 | int *x2 = &x; |
1360 | clang_analyzer_eval(x1 == x2); // expected-warning{{FALSE}} |
1361 | free(x1); |
1362 | return x; |
1363 | } |
1364 | |
1365 | int CMPRegionHeapToHeap2() { |
1366 | int x = 0; |
1367 | int *x1 = malloc(8); |
1368 | int *x2 = malloc(8); |
1369 | int *x4 = x1; |
1370 | int *x5 = x2; |
1371 | clang_analyzer_eval(x4 == x5); // expected-warning{{FALSE}} |
1372 | free(x1); |
1373 | free(x2); |
1374 | return x; |
1375 | } |
1376 | |
1377 | int CMPRegionHeapToHeap() { |
1378 | int x = 0; |
1379 | int *x1 = malloc(8); |
1380 | int *x4 = x1; |
1381 | if (x1 == x4) { |
1382 | free(x1); |
1383 | return 5/x; // expected-warning{{Division by zero}} |
1384 | } |
1385 | return x;// expected-warning{{This statement is never executed}} |
1386 | } |
1387 | |
1388 | int HeapAssignment() { |
1389 | int m = 0; |
1390 | int *x = malloc(4); |
1391 | int *y = x; |
1392 | *x = 5; |
1393 | clang_analyzer_eval(*x != *y); // expected-warning{{FALSE}} |
1394 | free(x); |
1395 | return 0; |
1396 | } |
1397 | |
1398 | int *retPtr(); |
1399 | int *retPtrMightAlias(int *x); |
1400 | int cmpHeapAllocationToUnknown() { |
1401 | int zero = 0; |
1402 | int *yBefore = retPtr(); |
1403 | int *m = malloc(8); |
1404 | int *yAfter = retPtrMightAlias(m); |
1405 | clang_analyzer_eval(yBefore == m); // expected-warning{{FALSE}} |
1406 | clang_analyzer_eval(yAfter == m); // expected-warning{{FALSE}} |
1407 | free(m); |
1408 | return 0; |
1409 | } |
1410 | |
1411 | void localArrayTest() { |
1412 | char *p = (char*)malloc(12); |
1413 | char *ArrayL[12]; |
1414 | ArrayL[0] = p; |
1415 | } // expected-warning {{leak}} |
1416 | |
1417 | void localStructTest() { |
1418 | StructWithPtr St; |
1419 | StructWithPtr *pSt = &St; |
1420 | pSt->memP = malloc(12); |
1421 | } // expected-warning{{Potential leak of memory pointed to by}} |
1422 | |
1423 | #ifdef __INTPTR_TYPE__ |
1424 | // Test double assignment through integers. |
1425 | typedef __INTPTR_TYPE__ intptr_t; |
1426 | typedef unsigned __INTPTR_TYPE__ uintptr_t; |
1427 | |
1428 | static intptr_t glob; |
1429 | void test_double_assign_ints() |
1430 | { |
1431 | void *ptr = malloc (16); // no-warning |
1432 | glob = (intptr_t)(uintptr_t)ptr; |
1433 | } |
1434 | |
1435 | void test_double_assign_ints_positive() |
1436 | { |
1437 | void *ptr = malloc(16); |
1438 | (void*)(intptr_t)(uintptr_t)ptr; // expected-warning {{unused}} |
1439 | } // expected-warning {{leak}} |
1440 | #endif |
1441 | |
1442 | void testCGContextNoLeak() |
1443 | { |
1444 | void *ptr = malloc(16); |
1445 | CGContextRef context = CGBitmapContextCreate(ptr); |
1446 | |
1447 | // Because you can get the data back out like this, even much later, |
1448 | // CGBitmapContextCreate is one of our "stop-tracking" exceptions. |
1449 | free(CGBitmapContextGetData(context)); |
1450 | } |
1451 | |
1452 | void testCGContextLeak() |
1453 | { |
1454 | void *ptr = malloc(16); |
1455 | CGContextRef context = CGBitmapContextCreate(ptr); |
1456 | // However, this time we're just leaking the data, because the context |
1457 | // object doesn't escape and it hasn't been freed in this function. |
1458 | } |
1459 | |
1460 | // Allow xpc context to escape. radar://11635258 |
1461 | // TODO: Would be great if we checked that the finalize_connection_context actually releases it. |
1462 | static void finalize_connection_context(void *ctx) { |
1463 | int *context = ctx; |
1464 | free(context); |
1465 | } |
1466 | void foo (xpc_connection_t peer) { |
1467 | int *ctx = calloc(1, sizeof(int)); |
1468 | xpc_connection_set_context(peer, ctx); |
1469 | xpc_connection_set_finalizer_f(peer, finalize_connection_context); |
1470 | xpc_connection_resume(peer); |
1471 | } |
1472 | |
1473 | // Make sure we catch errors when we free in a function which does not allocate memory. |
1474 | void freeButNoMalloc(int *p, int x){ |
1475 | if (x) { |
1476 | free(p); |
1477 | //user forgot a return here. |
1478 | } |
1479 | free(p); // expected-warning {{Attempt to free released memory}} |
1480 | } |
1481 | |
1482 | struct HasPtr { |
1483 | char *p; |
1484 | }; |
1485 | |
1486 | char* reallocButNoMalloc(struct HasPtr *a, int c, int size) { |
1487 | int *s; |
1488 | char *b = realloc(a->p, size); |
1489 | char *m = realloc(a->p, size); // expected-warning {{Attempt to free released memory}} |
1490 | // We don't expect a use-after-free for a->P here because the warning above |
1491 | // is a sink. |
1492 | return a->p; // no-warning |
1493 | } |
1494 | |
1495 | // We should not warn in this case since the caller will presumably free a->p in all cases. |
1496 | int reallocButNoMallocPR13674(struct HasPtr *a, int c, int size) { |
1497 | int *s; |
1498 | char *b = realloc(a->p, size); |
1499 | if (b == 0) |
1500 | return -1; |
1501 | a->p = b; |
1502 | return 0; |
1503 | } |
1504 | |
1505 | // Test realloc with no visible malloc. |
1506 | void *test(void *ptr) { |
1507 | void *newPtr = realloc(ptr, 4); |
1508 | if (newPtr == 0) { |
1509 | if (ptr) |
1510 | free(ptr); // no-warning |
1511 | } |
1512 | return newPtr; |
1513 | } |
1514 | |
1515 | |
1516 | char *testLeakWithinReturn(char *str) { |
1517 | return strdup(strdup(str)); // expected-warning{{leak}} |
1518 | } |
1519 | |
1520 | char *testWinLeakWithinReturn(char *str) { |
1521 | return _strdup(_strdup(str)); // expected-warning{{leak}} |
1522 | } |
1523 | |
1524 | wchar_t *testWinWideLeakWithinReturn(wchar_t *str) { |
1525 | return _wcsdup(_wcsdup(str)); // expected-warning{{leak}} |
1526 | } |
1527 | |
1528 | void passConstPtr(const char * ptr); |
1529 | |
1530 | void testPassConstPointer() { |
1531 | char * string = malloc(sizeof(char)*10); |
1532 | passConstPtr(string); |
1533 | return; // expected-warning {{leak}} |
1534 | } |
1535 | |
1536 | void testPassConstPointerIndirectly() { |
1537 | char *p = malloc(1); |
1538 | p++; |
1539 | memcmp(p, p, sizeof(&p)); |
1540 | return; // expected-warning {{leak}} |
1541 | } |
1542 | |
1543 | void testPassConstPointerIndirectlyStruct() { |
1544 | struct HasPtr hp; |
1545 | hp.p = malloc(10); |
1546 | memcmp(&hp, &hp, sizeof(hp)); |
1547 | return; // expected-warning {{Potential leak of memory pointed to by 'hp.p'}} |
1548 | } |
1549 | |
1550 | void testPassToSystemHeaderFunctionIndirectlyStruct() { |
1551 | SomeStruct ss; |
1552 | ss.p = malloc(1); |
1553 | fakeSystemHeaderCall(&ss); // invalidates ss, making ss.p unreachable |
1554 | // Technically a false negative here -- we know the system function won't free |
1555 | // ss.p, but nothing else will either! |
1556 | } // no-warning |
1557 | |
1558 | void testPassToSystemHeaderFunctionIndirectlyStructFree() { |
1559 | SomeStruct ss; |
1560 | ss.p = malloc(1); |
1561 | fakeSystemHeaderCall(&ss); // invalidates ss, making ss.p unreachable |
1562 | free(ss.p); |
1563 | } // no-warning |
1564 | |
1565 | void testPassToSystemHeaderFunctionIndirectlyArray() { |
1566 | int *p[1]; |
1567 | p[0] = malloc(sizeof(int)); |
1568 | fakeSystemHeaderCallIntPtr(p); // invalidates p, making p[0] unreachable |
1569 | // Technically a false negative here -- we know the system function won't free |
1570 | // p[0], but nothing else will either! |
1571 | } // no-warning |
1572 | |
1573 | void testPassToSystemHeaderFunctionIndirectlyArrayFree() { |
1574 | int *p[1]; |
1575 | p[0] = malloc(sizeof(int)); |
1576 | fakeSystemHeaderCallIntPtr(p); // invalidates p, making p[0] unreachable |
1577 | free(p[0]); |
1578 | } // no-warning |
1579 | |
1580 | int *testOffsetAllocate(size_t size) { |
1581 | int *memoryBlock = (int *)malloc(size + sizeof(int)); |
1582 | return &memoryBlock[1]; // no-warning |
1583 | } |
1584 | |
1585 | void testOffsetDeallocate(int *memoryBlock) { |
1586 | free(&memoryBlock[-1]); // no-warning |
1587 | } |
1588 | |
1589 | void testOffsetOfRegionFreed() { |
1590 | __int64_t * array = malloc(sizeof(__int64_t)*2); |
1591 | array += 1; |
1592 | free(&array[0]); // expected-warning{{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}} |
1593 | } |
1594 | |
1595 | void testOffsetOfRegionFreed2() { |
1596 | __int64_t *p = malloc(sizeof(__int64_t)*2); |
1597 | p += 1; |
1598 | free(p); // expected-warning{{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}} |
1599 | } |
1600 | |
1601 | void testOffsetOfRegionFreed3() { |
1602 | char *r = malloc(sizeof(char)); |
1603 | r = r - 10; |
1604 | free(r); // expected-warning {{Argument to free() is offset by -10 bytes from the start of memory allocated by malloc()}} |
1605 | } |
1606 | |
1607 | void testOffsetOfRegionFreedAfterFunctionCall() { |
1608 | int *p = malloc(sizeof(int)*2); |
1609 | p += 1; |
1610 | myfoo(p); |
1611 | free(p); // expected-warning{{Argument to free() is offset by 4 bytes from the start of memory allocated by malloc()}} |
1612 | } |
1613 | |
1614 | void testFixManipulatedPointerBeforeFree() { |
1615 | int * array = malloc(sizeof(int)*2); |
1616 | array += 1; |
1617 | free(&array[-1]); // no-warning |
1618 | } |
1619 | |
1620 | void testFixManipulatedPointerBeforeFree2() { |
1621 | char *r = malloc(sizeof(char)); |
1622 | r = r + 10; |
1623 | free(r-10); // no-warning |
1624 | } |
1625 | |
1626 | void freeOffsetPointerPassedToFunction() { |
1627 | __int64_t *p = malloc(sizeof(__int64_t)*2); |
1628 | p[1] = 0; |
1629 | p += 1; |
1630 | myfooint(*p); // not passing the pointer, only a value pointed by pointer |
1631 | free(p); // expected-warning {{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}} |
1632 | } |
1633 | |
1634 | int arbitraryInt(); |
1635 | void freeUnknownOffsetPointer() { |
1636 | char *r = malloc(sizeof(char)); |
1637 | r = r + arbitraryInt(); // unable to reason about what the offset might be |
1638 | free(r); // no-warning |
1639 | } |
1640 | |
1641 | void testFreeNonMallocPointerWithNoOffset() { |
1642 | char c; |
1643 | char *r = &c; |
1644 | r = r + 10; |
1645 | free(r-10); // expected-warning {{Argument to free() is the address of the local variable 'c', which is not memory allocated by malloc()}} |
1646 | } |
1647 | |
1648 | void testFreeNonMallocPointerWithOffset() { |
1649 | char c; |
1650 | char *r = &c; |
1651 | free(r+1); // expected-warning {{Argument to free() is the address of the local variable 'c', which is not memory allocated by malloc()}} |
1652 | } |
1653 | |
1654 | void testOffsetZeroDoubleFree() { |
1655 | int *array = malloc(sizeof(int)*2); |
1656 | int *p = &array[0]; |
1657 | free(p); |
1658 | free(&array[0]); // expected-warning{{Attempt to free released memory}} |
1659 | } |
1660 | |
1661 | void testOffsetPassedToStrlen() { |
1662 | char * string = malloc(sizeof(char)*10); |
1663 | string += 1; |
1664 | int length = strlen(string); // expected-warning {{Potential leak of memory pointed to by 'string'}} |
1665 | } |
1666 | |
1667 | void testOffsetPassedToStrlenThenFree() { |
1668 | char * string = malloc(sizeof(char)*10); |
1669 | string += 1; |
1670 | int length = strlen(string); |
1671 | free(string); // expected-warning {{Argument to free() is offset by 1 byte from the start of memory allocated by malloc()}} |
1672 | } |
1673 | |
1674 | void testOffsetPassedAsConst() { |
1675 | char * string = malloc(sizeof(char)*10); |
1676 | string += 1; |
1677 | passConstPtr(string); |
1678 | free(string); // expected-warning {{Argument to free() is offset by 1 byte from the start of memory allocated by malloc()}} |
1679 | } |
1680 | |
1681 | char **_vectorSegments; |
1682 | int _nVectorSegments; |
1683 | |
1684 | void poolFreeC(void* s) { |
1685 | free(s); // no-warning |
1686 | } |
1687 | void freeMemory() { |
1688 | while (_nVectorSegments) { |
1689 | poolFreeC(_vectorSegments[_nVectorSegments++]); |
1690 | } |
1691 | } |
1692 | |
1693 | // PR16730 |
1694 | void testReallocEscaped(void **memory) { |
1695 | *memory = malloc(47); |
1696 | char *new_memory = realloc(*memory, 47); |
1697 | if (new_memory != 0) { |
1698 | *memory = new_memory; |
1699 | } |
1700 | } |
1701 | |
1702 | // PR16558 |
1703 | void *smallocNoWarn(size_t size) { |
1704 | if (size == 0) { |
1705 | return malloc(1); // this branch is never called |
1706 | } |
1707 | else { |
1708 | return malloc(size); |
1709 | } |
1710 | } |
1711 | |
1712 | char *dupstrNoWarn(const char *s) { |
1713 | const int len = strlen(s); |
1714 | char *p = (char*) smallocNoWarn(len + 1); |
1715 | strcpy(p, s); // no-warning |
1716 | return p; |
1717 | } |
1718 | |
1719 | void *smallocWarn(size_t size) { |
1720 | if (size == 2) { |
1721 | return malloc(1); |
1722 | } |
1723 | else { |
1724 | return malloc(size); |
1725 | } |
1726 | } |
1727 | |
1728 | int *radar15580979() { |
1729 | int *data = (int *)malloc(32); |
1730 | int *p = data ?: (int*)malloc(32); // no warning |
1731 | return p; |
1732 | } |
1733 | |
1734 | // Some data structures may hold onto the pointer and free it later. |
1735 | void testEscapeThroughSystemCallTakingVoidPointer1(void *queue) { |
1736 | int *data = (int *)malloc(32); |
1737 | fake_insque(queue, data); // no warning |
1738 | } |
1739 | |
1740 | void testEscapeThroughSystemCallTakingVoidPointer2(fake_rb_tree_t *rbt) { |
1741 | int *data = (int *)malloc(32); |
1742 | fake_rb_tree_init(rbt, data); |
1743 | } //expected-warning{{Potential leak}} |
1744 | |
1745 | void testEscapeThroughSystemCallTakingVoidPointer3(fake_rb_tree_t *rbt) { |
1746 | int *data = (int *)malloc(32); |
1747 | fake_rb_tree_init(rbt, data); |
1748 | fake_rb_tree_insert_node(rbt, data); // no warning |
1749 | } |
1750 | |
1751 | struct IntAndPtr { |
1752 | int x; |
1753 | int *p; |
1754 | }; |
1755 | |
1756 | void constEscape(const void *ptr); |
1757 | |
1758 | void testConstEscapeThroughAnotherField() { |
1759 | struct IntAndPtr s; |
1760 | s.p = malloc(sizeof(int)); |
1761 | constEscape(&(s.x)); |
1762 | } // expected-warning {{Potential leak of memory pointed to by 's.p'}} |
1763 | |
1764 | // PR15623 |
1765 | int testNoCheckerDataPropogationFromLogicalOpOperandToOpResult(void) { |
1766 | char *param = malloc(10); |
1767 | char *value = malloc(10); |
1768 | int ok = (param && value); |
1769 | free(param); |
1770 | free(value); |
1771 | // Previously we ended up with 'Use of memory after it is freed' on return. |
1772 | return ok; // no warning |
1773 | } |
1774 | |
1775 | void (*fnptr)(int); |
1776 | void freeIndirectFunctionPtr() { |
1777 | void *p = (void *)fnptr; |
1778 | free(p); // expected-warning {{Argument to free() is a function pointer}} |
1779 | } |
1780 | |
1781 | void freeFunctionPtr() { |
1782 | free((void *)fnptr); // expected-warning {{Argument to free() is a function pointer}} |
1783 | } |
1784 | |
1785 | void allocateSomeMemory(void *offendingParameter, void **ptr) { |
1786 | *ptr = malloc(1); |
1787 | } |
1788 | |
1789 | void testNoCrashOnOffendingParameter() { |
1790 | // "extern" is necessary to avoid unrelated warnings |
1791 | // on passing uninitialized value. |
1792 | extern void *offendingParameter; |
1793 | void* ptr; |
1794 | allocateSomeMemory(offendingParameter, &ptr); |
1795 | } // expected-warning {{Potential leak of memory pointed to by 'ptr'}} |
1796 | |
1797 | |
1798 | // Test a false positive caused by a bug in liveness analysis. |
1799 | struct A { |
1800 | int *buf; |
1801 | }; |
1802 | struct B { |
1803 | struct A *a; |
1804 | }; |
1805 | void livenessBugRealloc(struct A *a) { |
1806 | a->buf = realloc(a->buf, sizeof(int)); // no-warning |
1807 | } |
1808 | void testLivenessBug(struct B *in_b) { |
1809 | struct B *b = in_b; |
1810 | livenessBugRealloc(b->a); |
1811 | ((void) 0); // An attempt to trick liveness analysis. |
1812 | livenessBugRealloc(b->a); |
1813 | } |
1814 | |
1815 | // ---------------------------------------------------------------------------- |
1816 | // False negatives. |
1817 | |
1818 | void testMallocWithParam(int **p) { |
1819 | *p = (int*) malloc(sizeof(int)); |
1820 | *p = 0; // FIXME: should warn here |
1821 | } |
1822 | |
1823 | void testMallocWithParam_2(int **p) { |
1824 | *p = (int*) malloc(sizeof(int)); // no-warning |
1825 | } |
1826 | |
1827 | void testPassToSystemHeaderFunctionIndirectly() { |
1828 | int *p = malloc(4); |
1829 | p++; |
1830 | fakeSystemHeaderCallInt(p); |
1831 | // FIXME: This is a leak: if we think a system function won't free p, it |
1832 | // won't free (p-1) either. |
1833 | } |
1834 | |
1835 | void testMallocIntoMalloc() { |
1836 | StructWithPtr *s = malloc(sizeof(StructWithPtr)); |
1837 | s->memP = malloc(sizeof(int)); |
1838 | free(s); |
1839 | } // FIXME: should warn here |
1840 | |