1 | // RUN: %clang_cc1 -std=c++14 -fsyntax-only -verify %s |
2 | |
3 | using nullptr_t = decltype(nullptr); |
4 | |
5 | template<typename T> |
6 | struct Base { |
7 | T inner; |
8 | }; |
9 | |
10 | int z; |
11 | |
12 | template<typename T> |
13 | struct X : Base<T> { |
14 | static int z; |
15 | |
16 | template<int U> |
17 | struct Inner { |
18 | }; |
19 | |
20 | bool f(T other) { |
21 | // A pair of comparisons; 'inner' is a dependent name so can't be assumed |
22 | // to be a template. |
23 | return this->inner < other > ::z; |
24 | } |
25 | }; |
26 | |
27 | void use_x(X<int> x) { x.f(0); } |
28 | |
29 | template<typename T> |
30 | struct Y { |
31 | static int z; |
32 | |
33 | template<int U> |
34 | struct Inner : Y { // expected-note {{declared here}} |
35 | }; |
36 | |
37 | bool f(T other) { |
38 | // We can determine that 'inner' does not exist at parse time, so can |
39 | // perform typo correction in this case. |
40 | return this->inner<other>::z; // expected-error {{no template named 'inner' in 'Y<T>'; did you mean 'Inner'?}} |
41 | } |
42 | }; |
43 | |
44 | struct Q { constexpr operator int() { return 0; } }; |
45 | void use_y(Y<Q> x) { x.f(Q()); } |
46 | |