1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
2 | "http://www.w3.org/TR/html4/strict.dtd"> |
3 | <html> |
4 | <head> |
5 | <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> |
6 | <title>Language Compatibility</title> |
7 | <link type="text/css" rel="stylesheet" href="menu.css"> |
8 | <link type="text/css" rel="stylesheet" href="content.css"> |
9 | <style type="text/css"> |
10 | </style> |
11 | </head> |
12 | <body> |
13 | |
14 | <!--#include virtual="menu.html.incl"--> |
15 | |
16 | <div id="content"> |
17 | |
18 | <!-- ======================================================================= --> |
19 | <h1>Language Compatibility</h1> |
20 | <!-- ======================================================================= --> |
21 | |
22 | <p>Clang strives to both conform to current language standards (up to C11 |
23 | and C++11) and also to implement many widely-used extensions available |
24 | in other compilers, so that most correct code will "just work" when |
25 | compiled with Clang. However, Clang is more strict than other |
26 | popular compilers, and may reject incorrect code that other |
27 | compilers allow. This page documents common compatibility and |
28 | portability issues with Clang to help you understand and fix the |
29 | problem in your code when Clang emits an error message.</p> |
30 | |
31 | <ul> |
32 | <li><a href="#c">C compatibility</a> |
33 | <ul> |
34 | <li><a href="#inline">C99 inline functions</a></li> |
35 | <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li> |
36 | <li><a href="#lvalue-cast">Lvalue casts</a></li> |
37 | <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li> |
38 | <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li> |
39 | <li><a href="#inline-asm">Inline assembly</a></li> |
40 | </ul> |
41 | </li> |
42 | <li><a href="#objective-c">Objective-C compatibility</a> |
43 | <ul> |
44 | <li><a href="#super-cast">Cast of super</a></li> |
45 | <li><a href="#sizeof-interface">Size of interfaces</a></li> |
46 | <li><a href="#objc_objs-cast">Internal Objective-C types</a></li> |
47 | <li><a href="#c_variables-class">C variables in @class or @protocol</a></li> |
48 | </ul> |
49 | </li> |
50 | <li><a href="#cxx">C++ compatibility</a> |
51 | <ul> |
52 | <li><a href="#vla">Variable-length arrays</a></li> |
53 | <li><a href="#dep_lookup">Unqualified lookup in templates</a></li> |
54 | <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li> |
55 | <li><a href="#undep_incomplete">Incomplete types in templates</a></li> |
56 | <li><a href="#bad_templates">Templates with no valid instantiations</a></li> |
57 | <li><a href="#default_init_const">Default initialization of const |
58 | variable of a class type requires user-defined default |
59 | constructor</a></li> |
60 | <li><a href="#param_name_lookup">Parameter name lookup</a></li> |
61 | </ul> |
62 | </li> |
63 | <li><a href="#cxx11">C++11 compatibility</a> |
64 | <ul> |
65 | <li><a href="#deleted-special-func">Deleted special member |
66 | functions</a></li> |
67 | </ul> |
68 | </li> |
69 | <li><a href="#objective-cxx">Objective-C++ compatibility</a> |
70 | <ul> |
71 | <li><a href="#implicit-downcasts">Implicit downcasts</a></li> |
72 | </ul> |
73 | <ul> |
74 | <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li> |
75 | </ul> |
76 | </li> |
77 | </ul> |
78 | |
79 | <!-- ======================================================================= --> |
80 | <h2 id="c">C compatibility</h2> |
81 | <!-- ======================================================================= --> |
82 | |
83 | <!-- ======================================================================= --> |
84 | <h3 id="inline">C99 inline functions</h3> |
85 | <!-- ======================================================================= --> |
86 | <p>By default, Clang builds C code in GNU C11 mode, so it uses standard C99 |
87 | semantics for the <code>inline</code> keyword. These semantics are different |
88 | from those in GNU C89 mode, which is the default mode in versions of GCC |
89 | prior to 5.0. For example, consider the following code:</p> |
90 | <pre> |
91 | inline int add(int i, int j) { return i + j; } |
92 | |
93 | int main() { |
94 | int i = add(4, 5); |
95 | return i; |
96 | } |
97 | </pre> |
98 | |
99 | <p>In C99, <code>inline</code> means that a function's definition is |
100 | provided only for inlining, and that there is another definition |
101 | (without <code>inline</code>) somewhere else in the program. That |
102 | means that this program is incomplete, because if <code>add</code> |
103 | isn't inlined (for example, when compiling without optimization), then |
104 | <code>main</code> will have an unresolved reference to that other |
105 | definition. Therefore we'll get a (correct) link-time error like this:</p> |
106 | |
107 | <pre> |
108 | Undefined symbols: |
109 | "_add", referenced from: |
110 | _main in cc-y1jXIr.o |
111 | </pre> |
112 | |
113 | <p>By contrast, GNU C89 mode (used by default in older versions of GCC) is the |
114 | C89 standard plus a lot of extensions. C89 doesn't have an <code>inline</code> |
115 | keyword, but GCC recognizes it as an extension and just treats it as a hint to |
116 | the optimizer.</p> |
117 | |
118 | <p>There are several ways to fix this problem:</p> |
119 | |
120 | <ul> |
121 | <li>Change <code>add</code> to a <code>static inline</code> |
122 | function. This is usually the right solution if only one |
123 | translation unit needs to use the function. <code>static |
124 | inline</code> functions are always resolved within the translation |
125 | unit, so you won't have to add a non-<code>inline</code> definition |
126 | of the function elsewhere in your program.</li> |
127 | |
128 | <li>Remove the <code>inline</code> keyword from this definition of |
129 | <code>add</code>. The <code>inline</code> keyword is not required |
130 | for a function to be inlined, nor does it guarantee that it will be. |
131 | Some compilers ignore it completely. Clang treats it as a mild |
132 | suggestion from the programmer.</li> |
133 | |
134 | <li>Provide an external (non-<code>inline</code>) definition |
135 | of <code>add</code> somewhere else in your program. The two |
136 | definitions must be equivalent!</li> |
137 | |
138 | <li>Compile in the GNU C89 dialect by adding |
139 | <code>-std=gnu89</code> to the set of Clang options. This option is |
140 | only recommended if the program source cannot be changed or if the |
141 | program also relies on additional C89-specific behavior that cannot |
142 | be changed.</li> |
143 | </ul> |
144 | |
145 | <p>All of this only applies to C code; the meaning of <code>inline</code> |
146 | in C++ is very different from its meaning in either GNU89 or C99.</p> |
147 | |
148 | <!-- ======================================================================= --> |
149 | <h3 id="vector_builtins">"missing" vector __builtin functions</h3> |
150 | <!-- ======================================================================= --> |
151 | |
152 | <p>The Intel and AMD manuals document a number "<tt><*mmintrin.h></tt>" |
153 | header files, which define a standardized API for accessing vector operations |
154 | on X86 CPUs. These functions have names like <tt>_mm_xor_ps</tt> and |
155 | <tt>_mm256_addsub_pd</tt>. Compilers have leeway to implement these functions |
156 | however they want. Since Clang supports an excellent set of <a |
157 | href="../docs/LanguageExtensions.html#vectors">native vector operations</a>, |
158 | the Clang headers implement these interfaces in terms of the native vector |
159 | operations. |
160 | </p> |
161 | |
162 | <p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to |
163 | builtin function calls, like <tt>__builtin_ia32_paddw128</tt>. These builtin |
164 | functions are an internal implementation detail of GCC, and are not portable to |
165 | the Intel compiler, the Microsoft compiler, or Clang. If you get build errors |
166 | mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p> |
167 | |
168 | <p>The same issue occurs for NEON and Altivec for the ARM and PowerPC |
169 | architectures respectively. For these, make sure to use the <arm_neon.h> |
170 | and <altivec.h> headers.</p> |
171 | |
172 | <p>For x86 architectures this <a href="builtins.py">script</a> should help with |
173 | the manual migration process. It will rewrite your source files in place to |
174 | use the APIs instead of builtin function calls. Just call it like this:</p> |
175 | |
176 | <pre> |
177 | builtins.py *.c *.h |
178 | </pre> |
179 | |
180 | <p>and it will rewrite all of the .c and .h files in the current directory to |
181 | use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p> |
182 | |
183 | <!-- ======================================================================= --> |
184 | <h3 id="lvalue-cast">Lvalue casts</h3> |
185 | <!-- ======================================================================= --> |
186 | |
187 | <p>Old versions of GCC permit casting the left-hand side of an assignment to a |
188 | different type. Clang produces an error on similar code, e.g.,</p> |
189 | |
190 | <pre> |
191 | <b>lvalue.c:2:3: <span class="error">error:</span> assignment to cast is illegal, lvalue casts are not supported</b> |
192 | (int*)addr = val; |
193 | <span class="caret"> ^~~~~~~~~~ ~</span> |
194 | </pre> |
195 | |
196 | <p>To fix this problem, move the cast to the right-hand side. In this |
197 | example, one could use:</p> |
198 | |
199 | <pre> |
200 | addr = (float *)val; |
201 | </pre> |
202 | |
203 | <!-- ======================================================================= --> |
204 | <h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3> |
205 | <!-- ======================================================================= --> |
206 | |
207 | <p>Clang disallows jumps into the scope of a <tt>__block</tt> |
208 | variable. Variables marked with <tt>__block</tt> require special |
209 | runtime initialization. A jump into the scope of a <tt>__block</tt> |
210 | variable bypasses this initialization, leaving the variable's metadata |
211 | in an invalid state. Consider the following code fragment:</p> |
212 | |
213 | <pre> |
214 | int fetch_object_state(struct MyObject *c) { |
215 | if (!c->active) goto error; |
216 | |
217 | __block int result; |
218 | run_specially_somehow(^{ result = c->state; }); |
219 | return result; |
220 | |
221 | error: |
222 | fprintf(stderr, "error while fetching object state"); |
223 | return -1; |
224 | } |
225 | </pre> |
226 | |
227 | <p>GCC accepts this code, but it produces code that will usually crash |
228 | when <code>result</code> goes out of scope if the jump is taken. (It's |
229 | possible for this bug to go undetected because it often won't crash if |
230 | the stack is fresh, i.e. still zeroed.) Therefore, Clang rejects this |
231 | code with a hard error:</p> |
232 | |
233 | <pre> |
234 | <b>t.c:3:5: <span class="error">error:</span> goto into protected scope</b> |
235 | goto error; |
236 | <span class="caret"> ^</span> |
237 | <b>t.c:5:15: <span class="note">note:</note></b> jump bypasses setup of __block variable |
238 | __block int result; |
239 | <span class="caret"> ^</span> |
240 | </pre> |
241 | |
242 | <p>The fix is to rewrite the code to not require jumping into a |
243 | <tt>__block</tt> variable's scope, e.g. by limiting that scope:</p> |
244 | |
245 | <pre> |
246 | { |
247 | __block int result; |
248 | run_specially_somehow(^{ result = c->state; }); |
249 | return result; |
250 | } |
251 | </pre> |
252 | |
253 | <!-- ======================================================================= --> |
254 | <h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt> |
255 | variables</h3> |
256 | <!-- ======================================================================= --> |
257 | |
258 | <p>In the following example code, the <tt>x</tt> variable is used before it is |
259 | defined:</p> |
260 | <pre> |
261 | int f0() { |
262 | __block int x; |
263 | return ^(){ return x; }(); |
264 | } |
265 | </pre> |
266 | |
267 | <p>By an accident of implementation, GCC and llvm-gcc unintentionally always |
268 | zero initialized <tt>__block</tt> variables. However, any program which depends |
269 | on this behavior is relying on unspecified compiler behavior. Programs must |
270 | explicitly initialize all local block variables before they are used, as with |
271 | other local variables.</p> |
272 | |
273 | <p>Clang does not zero initialize local block variables, and programs which rely |
274 | on such behavior will most likely break when built with Clang.</p> |
275 | |
276 | |
277 | <!-- ======================================================================= --> |
278 | <h3 id="inline-asm">Inline assembly</h3> |
279 | <!-- ======================================================================= --> |
280 | |
281 | <p>In general, Clang is highly compatible with the GCC inline assembly |
282 | extensions, allowing the same set of constraints, modifiers and operands as GCC |
283 | inline assembly.</p> |
284 | |
285 | <p>On targets that use the integrated assembler (such as most X86 targets), |
286 | inline assembly is run through the integrated assembler instead of your system |
287 | assembler (which is most commonly "gas", the GNU assembler). The LLVM |
288 | integrated assembler is extremely compatible with GAS, but there are a couple of |
289 | minor places where it is more picky, particularly due to outright GAS bugs.</p> |
290 | |
291 | <p>One specific example is that the assembler rejects ambiguous X86 instructions |
292 | that don't have suffixes. For example:</p> |
293 | |
294 | <pre> |
295 | asm("add %al, (%rax)"); |
296 | asm("addw $4, (%rax)"); |
297 | asm("add $4, (%rax)"); |
298 | </pre> |
299 | |
300 | <p>Both clang and GAS accept the first instruction: because the first |
301 | instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that |
302 | it is an 8-bit add. The second instruction is accepted by both because the "w" |
303 | suffix indicates that it is a 16-bit add. The last instruction is accepted by |
304 | GAS even though there is nothing that specifies the size of the instruction (and |
305 | the assembler randomly picks a 32-bit add). Because it is ambiguous, Clang |
306 | rejects the instruction with this error message: |
307 | </p> |
308 | |
309 | <pre> |
310 | <b><inline asm>:3:1: <span class="error">error:</span> ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')</b> |
311 | add $4, (%rax) |
312 | <span class="caret">^</span> |
313 | </pre> |
314 | |
315 | <p>To fix this compatibility issue, add an explicit suffix to the instruction: |
316 | this makes your code more clear and is compatible with both GCC and Clang.</p> |
317 | |
318 | <!-- ======================================================================= --> |
319 | <h2 id="objective-c">Objective-C compatibility</h2> |
320 | <!-- ======================================================================= --> |
321 | |
322 | <!-- ======================================================================= --> |
323 | <h3 id="super-cast">Cast of super</h3> |
324 | <!-- ======================================================================= --> |
325 | |
326 | <p>GCC treats the <code>super</code> identifier as an expression that |
327 | can, among other things, be cast to a different type. Clang treats |
328 | <code>super</code> as a context-sensitive keyword, and will reject a |
329 | type-cast of <code>super</code>:</p> |
330 | |
331 | <pre> |
332 | <b>super.m:11:12: <span class="error">error:</span> cannot cast 'super' (it isn't an expression)</b> |
333 | [(Super*)super add:4]; |
334 | <span class="caret"> ~~~~~~~~^</span> |
335 | </pre> |
336 | |
337 | <p>To fix this problem, remove the type cast, e.g.</p> |
338 | <pre> |
339 | [super add:4]; |
340 | </pre> |
341 | |
342 | <!-- ======================================================================= --> |
343 | <h3 id="sizeof-interface">Size of interfaces</h3> |
344 | <!-- ======================================================================= --> |
345 | |
346 | <p>When using the "non-fragile" Objective-C ABI in use, the size of an |
347 | Objective-C class may change over time as instance variables are added |
348 | (or removed). For this reason, Clang rejects the application of the |
349 | <code>sizeof</code> operator to an Objective-C class when using this |
350 | ABI:</p> |
351 | |
352 | <pre> |
353 | <b>sizeof.m:4:14: <span class="error">error:</span> invalid application of 'sizeof' to interface 'NSArray' in non-fragile ABI</b> |
354 | int size = sizeof(NSArray); |
355 | <span class="caret"> ^ ~~~~~~~~~</span> |
356 | </pre> |
357 | |
358 | <p>Code that relies on the size of an Objective-C class is likely to |
359 | be broken anyway, since that size is not actually constant. To address |
360 | this problem, use the Objective-C runtime API function |
361 | <code>class_getInstanceSize()</code>:</p> |
362 | |
363 | <pre> |
364 | class_getInstanceSize([NSArray class]) |
365 | </pre> |
366 | |
367 | <!-- ======================================================================= --> |
368 | <h3 id="objc_objs-cast">Internal Objective-C types</h3> |
369 | <!-- ======================================================================= --> |
370 | |
371 | <p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>, |
372 | <tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types |
373 | <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the |
374 | internal Objective-C structures as implementation detail and won't do implicit conversions: |
375 | |
376 | <pre> |
377 | <b>t.mm:11:2: <span class="error">error:</span> no matching function for call to 'f'</b> |
378 | f((struct objc_object *)p); |
379 | <span class="caret"> ^</span> |
380 | <b>t.mm:5:6: <span class="note">note:</note></b> candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument |
381 | void f(id x); |
382 | <span class="caret"> ^</span> |
383 | </pre> |
384 | |
385 | <p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> |
386 | instead of the internal types.</p> |
387 | |
388 | <!-- ======================================================================= --> |
389 | <h3 id="c_variables-class">C variables in @interface or @protocol</h3> |
390 | <!-- ======================================================================= --> |
391 | |
392 | <p>GCC allows the declaration of C variables in |
393 | an <code>@interface</code> or <code>@protocol</code> |
394 | declaration. Clang does not allow variable declarations to appear |
395 | within these declarations unless they are marked <code>extern</code>.</p> |
396 | |
397 | <p>Variables may still be declared in an @implementation.</p> |
398 | |
399 | <pre> |
400 | @interface XX |
401 | int a; // not allowed in clang |
402 | int b = 1; // not allowed in clang |
403 | extern int c; // allowed |
404 | @end |
405 | |
406 | </pre> |
407 | |
408 | <!-- ======================================================================= --> |
409 | <h2 id="cxx">C++ compatibility</h2> |
410 | <!-- ======================================================================= --> |
411 | |
412 | <!-- ======================================================================= --> |
413 | <h3 id="vla">Variable-length arrays</h3> |
414 | <!-- ======================================================================= --> |
415 | |
416 | <p>GCC and C99 allow an array's size to be determined at run |
417 | time. This extension is not permitted in standard C++. However, Clang |
418 | supports such variable length arrays for compatibility with GNU C and |
419 | C99 programs.</p> |
420 | |
421 | <p>If you would prefer not to use this extension, you can disable it with |
422 | <tt>-Werror=vla</tt>. There are several ways to fix your code: |
423 | |
424 | <ol> |
425 | <li>replace the variable length array with a fixed-size array if you can |
426 | determine a reasonable upper bound at compile time; sometimes this is as |
427 | simple as changing <tt>int size = ...;</tt> to <tt>const int size |
428 | = ...;</tt> (if the initializer is a compile-time constant);</li> |
429 | <li>use <tt>std::vector</tt> or some other suitable container type; |
430 | or</li> |
431 | <li>allocate the array on the heap instead using <tt>new Type[]</tt> - |
432 | just remember to <tt>delete[]</tt> it.</li> |
433 | </ol> |
434 | |
435 | <!-- ======================================================================= --> |
436 | <h3 id="dep_lookup">Unqualified lookup in templates</h3> |
437 | <!-- ======================================================================= --> |
438 | |
439 | <p>Some versions of GCC accept the following invalid code: |
440 | |
441 | <pre> |
442 | template <typename T> T Squared(T x) { |
443 | return Multiply(x, x); |
444 | } |
445 | |
446 | int Multiply(int x, int y) { |
447 | return x * y; |
448 | } |
449 | |
450 | int main() { |
451 | Squared(5); |
452 | } |
453 | </pre> |
454 | |
455 | <p>Clang complains: |
456 | |
457 | <pre> |
458 | <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b> |
459 | return Multiply(x, x); |
460 | <span class="caret"> ^</span> |
461 | <b>my_file.cpp:10:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Squared<int>' requested here |
462 | Squared(5); |
463 | <span class="caret"> ^</span> |
464 | <b>my_file.cpp:5:5: <span class="note">note:</span></b> 'Multiply' should be declared prior to the call site |
465 | int Multiply(int x, int y) { |
466 | <span class="caret"> ^</span> |
467 | </pre> |
468 | |
469 | <p>The C++ standard says that unqualified names like <q>Multiply</q> |
470 | are looked up in two ways. |
471 | |
472 | <p>First, the compiler does <i>unqualified lookup</i> in the scope |
473 | where the name was written. For a template, this means the lookup is |
474 | done at the point where the template is defined, not where it's |
475 | instantiated. Since <tt>Multiply</tt> hasn't been declared yet at |
476 | this point, unqualified lookup won't find it. |
477 | |
478 | <p>Second, if the name is called like a function, then the compiler |
479 | also does <i>argument-dependent lookup</i> (ADL). (Sometimes |
480 | unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for |
481 | more information.) In ADL, the compiler looks at the types of all the |
482 | arguments to the call. When it finds a class type, it looks up the |
483 | name in that class's namespace; the result is all the declarations it |
484 | finds in those namespaces, plus the declarations from unqualified |
485 | lookup. However, the compiler doesn't do ADL until it knows all the |
486 | argument types. |
487 | |
488 | <p>In our example, <tt>Multiply</tt> is called with dependent |
489 | arguments, so ADL isn't done until the template is instantiated. At |
490 | that point, the arguments both have type <tt>int</tt>, which doesn't |
491 | contain any class types, and so ADL doesn't look in any namespaces. |
492 | Since neither form of lookup found the declaration |
493 | of <tt>Multiply</tt>, the code doesn't compile. |
494 | |
495 | <p>Here's another example, this time using overloaded operators, |
496 | which obey very similar rules. |
497 | |
498 | <pre>#include <iostream> |
499 | |
500 | template<typename T> |
501 | void Dump(const T& value) { |
502 | std::cout << value << "\n"; |
503 | } |
504 | |
505 | namespace ns { |
506 | struct Data {}; |
507 | } |
508 | |
509 | std::ostream& operator<<(std::ostream& out, ns::Data data) { |
510 | return out << "Some data"; |
511 | } |
512 | |
513 | void Use() { |
514 | Dump(ns::Data()); |
515 | }</pre> |
516 | |
517 | <p>Again, Clang complains:</p> |
518 | |
519 | <pre> |
520 | <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator<<' that is neither visible in the template definition nor found by argument-dependent lookup</b> |
521 | std::cout << value << "\n"; |
522 | <span class="caret"> ^</span> |
523 | <b>my_file2.cpp:17:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Dump<ns::Data>' requested here |
524 | Dump(ns::Data()); |
525 | <span class="caret"> ^</span> |
526 | <b>my_file2.cpp:12:15: <span class="note">note:</span></b> 'operator<<' should be declared prior to the call site or in namespace 'ns' |
527 | std::ostream& operator<<(std::ostream& out, ns::Data data) { |
528 | <span class="caret"> ^</span> |
529 | </pre> |
530 | |
531 | <p>Just like before, unqualified lookup didn't find any declarations |
532 | with the name <tt>operator<<</tt>. Unlike before, the argument |
533 | types both contain class types: one of them is an instance of the |
534 | class template type <tt>std::basic_ostream</tt>, and the other is the |
535 | type <tt>ns::Data</tt> that we declared above. Therefore, ADL will |
536 | look in the namespaces <tt>std</tt> and <tt>ns</tt> for |
537 | an <tt>operator<<</tt>. Since one of the argument types was |
538 | still dependent during the template definition, ADL isn't done until |
539 | the template is instantiated during <tt>Use</tt>, which means that |
540 | the <tt>operator<<</tt> we want it to find has already been |
541 | declared. Unfortunately, it was declared in the global namespace, not |
542 | in either of the namespaces that ADL will look in! |
543 | |
544 | <p>There are two ways to fix this problem:</p> |
545 | <ol><li>Make sure the function you want to call is declared before the |
546 | template that might call it. This is the only option if none of its |
547 | argument types contain classes. You can do this either by moving the |
548 | template definition, or by moving the function definition, or by |
549 | adding a forward declaration of the function before the template.</li> |
550 | <li>Move the function into the same namespace as one of its arguments |
551 | so that ADL applies.</li></ol> |
552 | |
553 | <p>For more information about argument-dependent lookup, see |
554 | [basic.lookup.argdep]. For more information about the ordering of |
555 | lookup in templates, see [temp.dep.candidate]. |
556 | |
557 | <!-- ======================================================================= --> |
558 | <h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3> |
559 | <!-- ======================================================================= --> |
560 | |
561 | <p>Some versions of GCC accept the following invalid code: |
562 | |
563 | <pre> |
564 | template <typename T> struct Base { |
565 | void DoThis(T x) {} |
566 | static void DoThat(T x) {} |
567 | }; |
568 | |
569 | template <typename T> struct Derived : public Base<T> { |
570 | void Work(T x) { |
571 | DoThis(x); // Invalid! |
572 | DoThat(x); // Invalid! |
573 | } |
574 | }; |
575 | </pre> |
576 | |
577 | Clang correctly rejects it with the following errors |
578 | (when <tt>Derived</tt> is eventually instantiated): |
579 | |
580 | <pre> |
581 | <b>my_file.cpp:8:5: <span class="error">error:</span> use of undeclared identifier 'DoThis'</b> |
582 | DoThis(x); |
583 | <span class="caret"> ^</span> |
584 | this-> |
585 | <b>my_file.cpp:2:8: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class |
586 | void DoThis(T x) {} |
587 | <span class="caret"> ^</span> |
588 | <b>my_file.cpp:9:5: <span class="error">error:</span> use of undeclared identifier 'DoThat'</b> |
589 | DoThat(x); |
590 | <span class="caret"> ^</span> |
591 | this-> |
592 | <b>my_file.cpp:3:15: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class |
593 | static void DoThat(T x) {} |
594 | </pre> |
595 | |
596 | Like we said <a href="#dep_lookup">above</a>, unqualified names like |
597 | <tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template |
598 | <tt>Derived</tt> is defined, not when it's instantiated. When we look |
599 | up a name used in a class, we usually look into the base classes. |
600 | However, we can't look into the base class <tt>Base<T></tt> |
601 | because its type depends on the template argument <tt>T</tt>, so the |
602 | standard says we should just ignore it. See [temp.dep]p3 for details. |
603 | |
604 | <p>The fix, as Clang tells you, is to tell the compiler that we want a |
605 | class member by prefixing the calls with <tt>this-></tt>: |
606 | |
607 | <pre> |
608 | void Work(T x) { |
609 | <b>this-></b>DoThis(x); |
610 | <b>this-></b>DoThat(x); |
611 | } |
612 | </pre> |
613 | |
614 | Alternatively, you can tell the compiler exactly where to look: |
615 | |
616 | <pre> |
617 | void Work(T x) { |
618 | <b>Base<T></b>::DoThis(x); |
619 | <b>Base<T></b>::DoThat(x); |
620 | } |
621 | </pre> |
622 | |
623 | This works whether the methods are static or not, but be careful: |
624 | if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual |
625 | dispatch! |
626 | |
627 | <!-- ======================================================================= --> |
628 | <h3 id="undep_incomplete">Incomplete types in templates</h3> |
629 | <!-- ======================================================================= --> |
630 | |
631 | <p>The following code is invalid, but compilers are allowed to accept it: |
632 | |
633 | <pre> |
634 | class IOOptions; |
635 | template <class T> bool read(T &value) { |
636 | IOOptions opts; |
637 | return read(opts, value); |
638 | } |
639 | |
640 | class IOOptions { bool ForceReads; }; |
641 | bool read(const IOOptions &opts, int &x); |
642 | template bool read<>(int &); |
643 | </pre> |
644 | |
645 | The standard says that types which don't depend on template parameters |
646 | must be complete when a template is defined if they affect the |
647 | program's behavior. However, the standard also says that compilers |
648 | are free to not enforce this rule. Most compilers enforce it to some |
649 | extent; for example, it would be an error in GCC to |
650 | write <tt>opts.ForceReads</tt> in the code above. In Clang, we feel |
651 | that enforcing the rule consistently lets us provide a better |
652 | experience, but unfortunately it also means we reject some code that |
653 | other compilers accept. |
654 | |
655 | <p>We've explained the rule here in very imprecise terms; see |
656 | [temp.res]p8 for details. |
657 | |
658 | <!-- ======================================================================= --> |
659 | <h3 id="bad_templates">Templates with no valid instantiations</h3> |
660 | <!-- ======================================================================= --> |
661 | |
662 | <p>The following code contains a typo: the programmer |
663 | meant <tt>init()</tt> but wrote <tt>innit()</tt> instead. |
664 | |
665 | <pre> |
666 | template <class T> class Processor { |
667 | ... |
668 | void init(); |
669 | ... |
670 | }; |
671 | ... |
672 | template <class T> void process() { |
673 | Processor<T> processor; |
674 | processor.innit(); // <-- should be 'init()' |
675 | ... |
676 | } |
677 | </pre> |
678 | |
679 | Unfortunately, we can't flag this mistake as soon as we see it: inside |
680 | a template, we're not allowed to make assumptions about "dependent |
681 | types" like <tt>Processor<T></tt>. Suppose that later on in |
682 | this file the programmer adds an explicit specialization |
683 | of <tt>Processor</tt>, like so: |
684 | |
685 | <pre> |
686 | template <> class Processor<char*> { |
687 | void innit(); |
688 | }; |
689 | </pre> |
690 | |
691 | Now the program will work — as long as the programmer only ever |
692 | instantiates <tt>process()</tt> with <tt>T = char*</tt>! This is why |
693 | it's hard, and sometimes impossible, to diagnose mistakes in a |
694 | template definition before it's instantiated. |
695 | |
696 | <p>The standard says that a template with no valid instantiations is |
697 | ill-formed. Clang tries to do as much checking as possible at |
698 | definition-time instead of instantiation-time: not only does this |
699 | produce clearer diagnostics, but it also substantially improves |
700 | compile times when using pre-compiled headers. The downside to this |
701 | philosophy is that Clang sometimes fails to process files because they |
702 | contain broken templates that are no longer used. The solution is |
703 | simple: since the code is unused, just remove it. |
704 | |
705 | <!-- ======================================================================= --> |
706 | <h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3> |
707 | <!-- ======================================================================= --> |
708 | |
709 | <p>If a <tt>class</tt> or <tt>struct</tt> has no user-defined default |
710 | constructor, C++ doesn't allow you to default construct a <tt>const</tt> |
711 | instance of it like this ([dcl.init], p9): |
712 | |
713 | <pre> |
714 | class Foo { |
715 | public: |
716 | // The compiler-supplied default constructor works fine, so we |
717 | // don't bother with defining one. |
718 | ... |
719 | }; |
720 | |
721 | void Bar() { |
722 | const Foo foo; // Error! |
723 | ... |
724 | } |
725 | </pre> |
726 | |
727 | To fix this, you can define a default constructor for the class: |
728 | |
729 | <pre> |
730 | class Foo { |
731 | public: |
732 | Foo() {} |
733 | ... |
734 | }; |
735 | |
736 | void Bar() { |
737 | const Foo foo; // Now the compiler is happy. |
738 | ... |
739 | } |
740 | </pre> |
741 | |
742 | An upcoming change to the C++ standard is expected to weaken this rule to only |
743 | apply when the compiler-supplied default constructor would leave a member |
744 | uninitialized. Clang implements the more relaxed rule in version 3.8 onwards. |
745 | |
746 | <!-- ======================================================================= --> |
747 | <h3 id="param_name_lookup">Parameter name lookup</h3> |
748 | <!-- ======================================================================= --> |
749 | |
750 | <p>Some versions of GCC allow the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p> |
751 | <blockquote> |
752 | <pre> |
753 | void f(int a, int a); |
754 | </pre> |
755 | </blockquote> |
756 | <p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p> |
757 | |
758 | <!-- ======================================================================= --> |
759 | <h2 id="cxx11">C++11 compatibility</h2> |
760 | <!-- ======================================================================= --> |
761 | |
762 | <!-- ======================================================================= --> |
763 | <h3 id="deleted-special-func">Deleted special member functions</h3> |
764 | <!-- ======================================================================= --> |
765 | |
766 | <p>In C++11, the explicit declaration of a move constructor or a move |
767 | assignment operator within a class deletes the implicit declaration |
768 | of the copy constructor and copy assignment operator. This change came |
769 | fairly late in the C++11 standardization process, so early |
770 | implementations of C++11 (including Clang before 3.0, GCC before 4.7, |
771 | and Visual Studio 2010) do not implement this rule, leading them to |
772 | accept this ill-formed code:</p> |
773 | |
774 | <pre> |
775 | struct X { |
776 | X(X&&); <i>// deletes implicit copy constructor:</i> |
777 | <i>// X(const X&) = delete;</i> |
778 | }; |
779 | |
780 | void f(X x); |
781 | void g(X x) { |
782 | f(x); <i>// error: X has a deleted copy constructor</i> |
783 | } |
784 | </pre> |
785 | |
786 | <p>This affects some early C++11 code, including Boost's popular <a |
787 | href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a> |
788 | up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is |
789 | <a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p> |
790 | |
791 | <!-- ======================================================================= --> |
792 | <h2 id="objective-cxx">Objective-C++ compatibility</h2> |
793 | <!-- ======================================================================= --> |
794 | |
795 | <!-- ======================================================================= --> |
796 | <h3 id="implicit-downcasts">Implicit downcasts</h3> |
797 | <!-- ======================================================================= --> |
798 | |
799 | <p>Due to a bug in its implementation, GCC allows implicit downcasts |
800 | of Objective-C pointers (from a base class to a derived class) when |
801 | calling functions. Such code is inherently unsafe, since the object |
802 | might not actually be an instance of the derived class, and is |
803 | rejected by Clang. For example, given this code:</p> |
804 | |
805 | <pre> |
806 | @interface Base @end |
807 | @interface Derived : Base @end |
808 | |
809 | void f(Derived *p); |
810 | void g(Base *p) { |
811 | f(p); |
812 | } |
813 | </pre> |
814 | |
815 | <p>Clang produces the following error:</p> |
816 | |
817 | <pre> |
818 | <b>downcast.mm:6:3: <span class="error">error:</span> no matching function for call to 'f'</b> |
819 | f(p); |
820 | <span class="caret"> ^</span> |
821 | <b>downcast.mm:4:6: <span class="note">note:</note></b> candidate function not viable: cannot convert from |
822 | superclass 'Base *' to subclass 'Derived *' for 1st argument |
823 | void f(Derived *p); |
824 | <span class="caret"> ^</span> |
825 | </pre> |
826 | |
827 | <p>If the downcast is actually correct (e.g., because the code has |
828 | already checked that the object has the appropriate type), add an |
829 | explicit cast:</p> |
830 | |
831 | <pre> |
832 | f((Derived *)base); |
833 | </pre> |
834 | |
835 | <!-- ======================================================================= --> |
836 | <h3 id="class-as-property-name">Using <code>class</code> as a property name</h3> |
837 | <!-- ======================================================================= --> |
838 | |
839 | <p>In C and Objective-C, <code>class</code> is a normal identifier and |
840 | can be used to name fields, ivars, methods, and so on. In |
841 | C++, <code>class</code> is a keyword. For compatibility with existing |
842 | code, Clang permits <code>class</code> to be used as part of a method |
843 | selector in Objective-C++, but this does not extend to any other part |
844 | of the language. In particular, it is impossible to use property dot |
845 | syntax in Objective-C++ with the property name <code>class</code>, so |
846 | the following code will fail to parse:</p> |
847 | |
848 | <pre> |
849 | @interface I { |
850 | int cls; |
851 | } |
852 | + (int)class; |
853 | @end |
854 | |
855 | @implementation I |
856 | - (int) Meth { return I.class; } |
857 | @end |
858 | </pre> |
859 | |
860 | <p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p> |
861 | |
862 | </div> |
863 | </body> |
864 | </html> |
865 | |