1 | // Copyright 2013 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package ssa |
6 | |
7 | // This file implements the BUILD phase of SSA construction. |
8 | // |
9 | // SSA construction has two phases, CREATE and BUILD. In the CREATE phase |
10 | // (create.go), all packages are constructed and type-checked and |
11 | // definitions of all package members are created, method-sets are |
12 | // computed, and wrapper methods are synthesized. |
13 | // ssa.Packages are created in arbitrary order. |
14 | // |
15 | // In the BUILD phase (builder.go), the builder traverses the AST of |
16 | // each Go source function and generates SSA instructions for the |
17 | // function body. Initializer expressions for package-level variables |
18 | // are emitted to the package's init() function in the order specified |
19 | // by go/types.Info.InitOrder, then code for each function in the |
20 | // package is generated in lexical order. |
21 | // The BUILD phases for distinct packages are independent and are |
22 | // executed in parallel. |
23 | // |
24 | // TODO(adonovan): indeed, building functions is now embarrassingly parallel. |
25 | // Audit for concurrency then benchmark using more goroutines. |
26 | // |
27 | // State: |
28 | // |
29 | // The Package's and Program's indices (maps) are populated and |
30 | // mutated during the CREATE phase, but during the BUILD phase they |
31 | // remain constant. The sole exception is Prog.methodSets and its |
32 | // related maps, which are protected by a dedicated mutex. |
33 | // |
34 | // Generic functions declared in a package P can be instantiated from functions |
35 | // outside of P. This happens independently of the CREATE and BUILD phase of P. |
36 | // |
37 | // Locks: |
38 | // |
39 | // Mutexes are currently acquired according to the following order: |
40 | // Prog.methodsMu ⊃ canonizer.mu ⊃ printMu |
41 | // where x ⊃ y denotes that y can be acquired while x is held |
42 | // and x cannot be acquired while y is held. |
43 | // |
44 | // Synthetics: |
45 | // |
46 | // During the BUILD phase new functions can be created and built. These include: |
47 | // - wrappers (wrappers, bounds, thunks) |
48 | // - generic function instantiations |
49 | // These functions do not belong to a specific Pkg (Pkg==nil). Instead the |
50 | // Package that led to them being CREATED is obligated to ensure these |
51 | // are BUILT during the BUILD phase of the Package. |
52 | // |
53 | // Runtime types: |
54 | // |
55 | // A concrete type is a type that is fully monomorphized with concrete types, |
56 | // i.e. it cannot reach a TypeParam type. |
57 | // Some concrete types require full runtime type information. Cases |
58 | // include checking whether a type implements an interface or |
59 | // interpretation by the reflect package. All such types that may require |
60 | // this information will have all of their method sets built and will be added to Prog.methodSets. |
61 | // A type T is considered to require runtime type information if it is |
62 | // a runtime type and has a non-empty method set and either: |
63 | // - T flows into a MakeInterface instructions, |
64 | // - T appears in a concrete exported member, or |
65 | // - T is a type reachable from a type S that has non-empty method set. |
66 | // For any such type T, method sets must be created before the BUILD |
67 | // phase of the package is done. |
68 | // |
69 | // Function literals: |
70 | // |
71 | // The BUILD phase of a function literal (anonymous function) is tied to the |
72 | // BUILD phase of the enclosing parent function. The FreeVars of an anonymous |
73 | // function are discovered by building the anonymous function. This in turn |
74 | // changes which variables must be bound in a MakeClosure instruction in the |
75 | // parent. Anonymous functions also track where they are referred to in their |
76 | // parent function. |
77 | // |
78 | // Happens-before: |
79 | // |
80 | // The above discussion leads to the following happens-before relation for |
81 | // the BUILD and CREATE phases. |
82 | // The happens-before relation (with X<Y denoting X happens-before Y) are: |
83 | // - CREATE fn < fn.startBody() < fn.finishBody() < fn.built |
84 | // for any function fn. |
85 | // - anon.parent.startBody() < CREATE anon, and |
86 | // anon.finishBody() < anon.parent().finishBody() < anon.built < fn.built |
87 | // for an anonymous function anon (i.e. anon.parent() != nil). |
88 | // - CREATE fn.Pkg < CREATE fn |
89 | // for a declared function fn (i.e. fn.Pkg != nil) |
90 | // - fn.built < BUILD pkg done |
91 | // for any function fn created during the CREATE or BUILD phase of a package |
92 | // pkg. This includes declared and synthetic functions. |
93 | // |
94 | // Program.MethodValue: |
95 | // |
96 | // Program.MethodValue may trigger new wrapper and instantiation functions to |
97 | // be created. It has the same obligation to BUILD created functions as a |
98 | // Package. |
99 | // |
100 | // Program.NewFunction: |
101 | // |
102 | // This is a low level operation for creating functions that do not exist in |
103 | // the source. Use with caution. |
104 | // |
105 | // TODO(taking): Use consistent terminology for "concrete". |
106 | // TODO(taking): Use consistent terminology for "monomorphization"/"instantiate"/"expand". |
107 | |
108 | import ( |
109 | "fmt" |
110 | "go/ast" |
111 | "go/constant" |
112 | "go/token" |
113 | "go/types" |
114 | "os" |
115 | "sync" |
116 | |
117 | "golang.org/x/tools/internal/typeparams" |
118 | ) |
119 | |
120 | type opaqueType struct { |
121 | types.Type |
122 | name string |
123 | } |
124 | |
125 | func (t *opaqueType) String() string { return t.name } |
126 | |
127 | var ( |
128 | varOk = newVar("ok", tBool) |
129 | varIndex = newVar("index", tInt) |
130 | |
131 | // Type constants. |
132 | tBool = types.Typ[types.Bool] |
133 | tByte = types.Typ[types.Byte] |
134 | tInt = types.Typ[types.Int] |
135 | tInvalid = types.Typ[types.Invalid] |
136 | tString = types.Typ[types.String] |
137 | tUntypedNil = types.Typ[types.UntypedNil] |
138 | tRangeIter = &opaqueType{nil, "iter"} // the type of all "range" iterators |
139 | tEface = types.NewInterfaceType(nil, nil).Complete() |
140 | |
141 | // SSA Value constants. |
142 | vZero = intConst(0) |
143 | vOne = intConst(1) |
144 | vTrue = NewConst(constant.MakeBool(true), tBool) |
145 | ) |
146 | |
147 | // builder holds state associated with the package currently being built. |
148 | // Its methods contain all the logic for AST-to-SSA conversion. |
149 | type builder struct { |
150 | // Invariant: 0 <= rtypes <= finished <= created.Len() |
151 | created *creator // functions created during building |
152 | finished int // Invariant: create[i].built holds for i in [0,finished) |
153 | rtypes int // Invariant: all of the runtime types for create[i] have been added for i in [0,rtypes) |
154 | } |
155 | |
156 | // cond emits to fn code to evaluate boolean condition e and jump |
157 | // to t or f depending on its value, performing various simplifications. |
158 | // |
159 | // Postcondition: fn.currentBlock is nil. |
160 | func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) { |
161 | switch e := e.(type) { |
162 | case *ast.ParenExpr: |
163 | b.cond(fn, e.X, t, f) |
164 | return |
165 | |
166 | case *ast.BinaryExpr: |
167 | switch e.Op { |
168 | case token.LAND: |
169 | ltrue := fn.newBasicBlock("cond.true") |
170 | b.cond(fn, e.X, ltrue, f) |
171 | fn.currentBlock = ltrue |
172 | b.cond(fn, e.Y, t, f) |
173 | return |
174 | |
175 | case token.LOR: |
176 | lfalse := fn.newBasicBlock("cond.false") |
177 | b.cond(fn, e.X, t, lfalse) |
178 | fn.currentBlock = lfalse |
179 | b.cond(fn, e.Y, t, f) |
180 | return |
181 | } |
182 | |
183 | case *ast.UnaryExpr: |
184 | if e.Op == token.NOT { |
185 | b.cond(fn, e.X, f, t) |
186 | return |
187 | } |
188 | } |
189 | |
190 | // A traditional compiler would simplify "if false" (etc) here |
191 | // but we do not, for better fidelity to the source code. |
192 | // |
193 | // The value of a constant condition may be platform-specific, |
194 | // and may cause blocks that are reachable in some configuration |
195 | // to be hidden from subsequent analyses such as bug-finding tools. |
196 | emitIf(fn, b.expr(fn, e), t, f) |
197 | } |
198 | |
199 | // logicalBinop emits code to fn to evaluate e, a &&- or |
200 | // ||-expression whose reified boolean value is wanted. |
201 | // The value is returned. |
202 | func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value { |
203 | rhs := fn.newBasicBlock("binop.rhs") |
204 | done := fn.newBasicBlock("binop.done") |
205 | |
206 | // T(e) = T(e.X) = T(e.Y) after untyped constants have been |
207 | // eliminated. |
208 | // TODO(adonovan): not true; MyBool==MyBool yields UntypedBool. |
209 | t := fn.typeOf(e) |
210 | |
211 | var short Value // value of the short-circuit path |
212 | switch e.Op { |
213 | case token.LAND: |
214 | b.cond(fn, e.X, rhs, done) |
215 | short = NewConst(constant.MakeBool(false), t) |
216 | |
217 | case token.LOR: |
218 | b.cond(fn, e.X, done, rhs) |
219 | short = NewConst(constant.MakeBool(true), t) |
220 | } |
221 | |
222 | // Is rhs unreachable? |
223 | if rhs.Preds == nil { |
224 | // Simplify false&&y to false, true||y to true. |
225 | fn.currentBlock = done |
226 | return short |
227 | } |
228 | |
229 | // Is done unreachable? |
230 | if done.Preds == nil { |
231 | // Simplify true&&y (or false||y) to y. |
232 | fn.currentBlock = rhs |
233 | return b.expr(fn, e.Y) |
234 | } |
235 | |
236 | // All edges from e.X to done carry the short-circuit value. |
237 | var edges []Value |
238 | for range done.Preds { |
239 | edges = append(edges, short) |
240 | } |
241 | |
242 | // The edge from e.Y to done carries the value of e.Y. |
243 | fn.currentBlock = rhs |
244 | edges = append(edges, b.expr(fn, e.Y)) |
245 | emitJump(fn, done) |
246 | fn.currentBlock = done |
247 | |
248 | phi := &Phi{Edges: edges, Comment: e.Op.String()} |
249 | phi.pos = e.OpPos |
250 | phi.typ = t |
251 | return done.emit(phi) |
252 | } |
253 | |
254 | // exprN lowers a multi-result expression e to SSA form, emitting code |
255 | // to fn and returning a single Value whose type is a *types.Tuple. |
256 | // The caller must access the components via Extract. |
257 | // |
258 | // Multi-result expressions include CallExprs in a multi-value |
259 | // assignment or return statement, and "value,ok" uses of |
260 | // TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op |
261 | // is token.ARROW). |
262 | func (b *builder) exprN(fn *Function, e ast.Expr) Value { |
263 | typ := fn.typeOf(e).(*types.Tuple) |
264 | switch e := e.(type) { |
265 | case *ast.ParenExpr: |
266 | return b.exprN(fn, e.X) |
267 | |
268 | case *ast.CallExpr: |
269 | // Currently, no built-in function nor type conversion |
270 | // has multiple results, so we can avoid some of the |
271 | // cases for single-valued CallExpr. |
272 | var c Call |
273 | b.setCall(fn, e, &c.Call) |
274 | c.typ = typ |
275 | return fn.emit(&c) |
276 | |
277 | case *ast.IndexExpr: |
278 | mapt := typeparams.CoreType(fn.typeOf(e.X)).(*types.Map) // ,ok must be a map. |
279 | lookup := &Lookup{ |
280 | X: b.expr(fn, e.X), |
281 | Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()), |
282 | CommaOk: true, |
283 | } |
284 | lookup.setType(typ) |
285 | lookup.setPos(e.Lbrack) |
286 | return fn.emit(lookup) |
287 | |
288 | case *ast.TypeAssertExpr: |
289 | return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen) |
290 | |
291 | case *ast.UnaryExpr: // must be receive <- |
292 | unop := &UnOp{ |
293 | Op: token.ARROW, |
294 | X: b.expr(fn, e.X), |
295 | CommaOk: true, |
296 | } |
297 | unop.setType(typ) |
298 | unop.setPos(e.OpPos) |
299 | return fn.emit(unop) |
300 | } |
301 | panic(fmt.Sprintf("exprN(%T) in %s", e, fn)) |
302 | } |
303 | |
304 | // builtin emits to fn SSA instructions to implement a call to the |
305 | // built-in function obj with the specified arguments |
306 | // and return type. It returns the value defined by the result. |
307 | // |
308 | // The result is nil if no special handling was required; in this case |
309 | // the caller should treat this like an ordinary library function |
310 | // call. |
311 | func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value { |
312 | typ = fn.typ(typ) |
313 | switch obj.Name() { |
314 | case "make": |
315 | switch ct := typeparams.CoreType(typ).(type) { |
316 | case *types.Slice: |
317 | n := b.expr(fn, args[1]) |
318 | m := n |
319 | if len(args) == 3 { |
320 | m = b.expr(fn, args[2]) |
321 | } |
322 | if m, ok := m.(*Const); ok { |
323 | // treat make([]T, n, m) as new([m]T)[:n] |
324 | cap := m.Int64() |
325 | at := types.NewArray(ct.Elem(), cap) |
326 | alloc := emitNew(fn, at, pos) |
327 | alloc.Comment = "makeslice" |
328 | v := &Slice{ |
329 | X: alloc, |
330 | High: n, |
331 | } |
332 | v.setPos(pos) |
333 | v.setType(typ) |
334 | return fn.emit(v) |
335 | } |
336 | v := &MakeSlice{ |
337 | Len: n, |
338 | Cap: m, |
339 | } |
340 | v.setPos(pos) |
341 | v.setType(typ) |
342 | return fn.emit(v) |
343 | |
344 | case *types.Map: |
345 | var res Value |
346 | if len(args) == 2 { |
347 | res = b.expr(fn, args[1]) |
348 | } |
349 | v := &MakeMap{Reserve: res} |
350 | v.setPos(pos) |
351 | v.setType(typ) |
352 | return fn.emit(v) |
353 | |
354 | case *types.Chan: |
355 | var sz Value = vZero |
356 | if len(args) == 2 { |
357 | sz = b.expr(fn, args[1]) |
358 | } |
359 | v := &MakeChan{Size: sz} |
360 | v.setPos(pos) |
361 | v.setType(typ) |
362 | return fn.emit(v) |
363 | } |
364 | |
365 | case "new": |
366 | alloc := emitNew(fn, deref(typ), pos) |
367 | alloc.Comment = "new" |
368 | return alloc |
369 | |
370 | case "len", "cap": |
371 | // Special case: len or cap of an array or *array is |
372 | // based on the type, not the value which may be nil. |
373 | // We must still evaluate the value, though. (If it |
374 | // was side-effect free, the whole call would have |
375 | // been constant-folded.) |
376 | // |
377 | // Type parameters are always non-constant so use Underlying. |
378 | t := deref(fn.typeOf(args[0])).Underlying() |
379 | if at, ok := t.(*types.Array); ok { |
380 | b.expr(fn, args[0]) // for effects only |
381 | return intConst(at.Len()) |
382 | } |
383 | // Otherwise treat as normal. |
384 | |
385 | case "panic": |
386 | fn.emit(&Panic{ |
387 | X: emitConv(fn, b.expr(fn, args[0]), tEface), |
388 | pos: pos, |
389 | }) |
390 | fn.currentBlock = fn.newBasicBlock("unreachable") |
391 | return vTrue // any non-nil Value will do |
392 | } |
393 | return nil // treat all others as a regular function call |
394 | } |
395 | |
396 | // addr lowers a single-result addressable expression e to SSA form, |
397 | // emitting code to fn and returning the location (an lvalue) defined |
398 | // by the expression. |
399 | // |
400 | // If escaping is true, addr marks the base variable of the |
401 | // addressable expression e as being a potentially escaping pointer |
402 | // value. For example, in this code: |
403 | // |
404 | // a := A{ |
405 | // b: [1]B{B{c: 1}} |
406 | // } |
407 | // return &a.b[0].c |
408 | // |
409 | // the application of & causes a.b[0].c to have its address taken, |
410 | // which means that ultimately the local variable a must be |
411 | // heap-allocated. This is a simple but very conservative escape |
412 | // analysis. |
413 | // |
414 | // Operations forming potentially escaping pointers include: |
415 | // - &x, including when implicit in method call or composite literals. |
416 | // - a[:] iff a is an array (not *array) |
417 | // - references to variables in lexically enclosing functions. |
418 | func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue { |
419 | switch e := e.(type) { |
420 | case *ast.Ident: |
421 | if isBlankIdent(e) { |
422 | return blank{} |
423 | } |
424 | obj := fn.objectOf(e) |
425 | var v Value |
426 | if g := fn.Prog.packageLevelMember(obj); g != nil { |
427 | v = g.(*Global) // var (address) |
428 | } else { |
429 | v = fn.lookup(obj, escaping) |
430 | } |
431 | return &address{addr: v, pos: e.Pos(), expr: e} |
432 | |
433 | case *ast.CompositeLit: |
434 | t := deref(fn.typeOf(e)) |
435 | var v *Alloc |
436 | if escaping { |
437 | v = emitNew(fn, t, e.Lbrace) |
438 | } else { |
439 | v = fn.addLocal(t, e.Lbrace) |
440 | } |
441 | v.Comment = "complit" |
442 | var sb storebuf |
443 | b.compLit(fn, v, e, true, &sb) |
444 | sb.emit(fn) |
445 | return &address{addr: v, pos: e.Lbrace, expr: e} |
446 | |
447 | case *ast.ParenExpr: |
448 | return b.addr(fn, e.X, escaping) |
449 | |
450 | case *ast.SelectorExpr: |
451 | sel := fn.selection(e) |
452 | if sel == nil { |
453 | // qualified identifier |
454 | return b.addr(fn, e.Sel, escaping) |
455 | } |
456 | if sel.kind != types.FieldVal { |
457 | panic(sel) |
458 | } |
459 | wantAddr := true |
460 | v := b.receiver(fn, e.X, wantAddr, escaping, sel) |
461 | index := sel.index[len(sel.index)-1] |
462 | fld := typeparams.CoreType(deref(v.Type())).(*types.Struct).Field(index) |
463 | |
464 | // Due to the two phases of resolving AssignStmt, a panic from x.f = p() |
465 | // when x is nil is required to come after the side-effects of |
466 | // evaluating x and p(). |
467 | emit := func(fn *Function) Value { |
468 | return emitFieldSelection(fn, v, index, true, e.Sel) |
469 | } |
470 | return &lazyAddress{addr: emit, t: fld.Type(), pos: e.Sel.Pos(), expr: e.Sel} |
471 | |
472 | case *ast.IndexExpr: |
473 | xt := fn.typeOf(e.X) |
474 | elem, mode := indexType(xt) |
475 | var x Value |
476 | var et types.Type |
477 | switch mode { |
478 | case ixArrVar: // array, array|slice, array|*array, or array|*array|slice. |
479 | x = b.addr(fn, e.X, escaping).address(fn) |
480 | et = types.NewPointer(elem) |
481 | case ixVar: // *array, slice, *array|slice |
482 | x = b.expr(fn, e.X) |
483 | et = types.NewPointer(elem) |
484 | case ixMap: |
485 | mt := typeparams.CoreType(xt).(*types.Map) |
486 | return &element{ |
487 | m: b.expr(fn, e.X), |
488 | k: emitConv(fn, b.expr(fn, e.Index), mt.Key()), |
489 | t: mt.Elem(), |
490 | pos: e.Lbrack, |
491 | } |
492 | default: |
493 | panic("unexpected container type in IndexExpr: " + xt.String()) |
494 | } |
495 | index := b.expr(fn, e.Index) |
496 | if isUntyped(index.Type()) { |
497 | index = emitConv(fn, index, tInt) |
498 | } |
499 | // Due to the two phases of resolving AssignStmt, a panic from x[i] = p() |
500 | // when x is nil or i is out-of-bounds is required to come after the |
501 | // side-effects of evaluating x, i and p(). |
502 | emit := func(fn *Function) Value { |
503 | v := &IndexAddr{ |
504 | X: x, |
505 | Index: index, |
506 | } |
507 | v.setPos(e.Lbrack) |
508 | v.setType(et) |
509 | return fn.emit(v) |
510 | } |
511 | return &lazyAddress{addr: emit, t: deref(et), pos: e.Lbrack, expr: e} |
512 | |
513 | case *ast.StarExpr: |
514 | return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e} |
515 | } |
516 | |
517 | panic(fmt.Sprintf("unexpected address expression: %T", e)) |
518 | } |
519 | |
520 | type store struct { |
521 | lhs lvalue |
522 | rhs Value |
523 | } |
524 | |
525 | type storebuf struct{ stores []store } |
526 | |
527 | func (sb *storebuf) store(lhs lvalue, rhs Value) { |
528 | sb.stores = append(sb.stores, store{lhs, rhs}) |
529 | } |
530 | |
531 | func (sb *storebuf) emit(fn *Function) { |
532 | for _, s := range sb.stores { |
533 | s.lhs.store(fn, s.rhs) |
534 | } |
535 | } |
536 | |
537 | // assign emits to fn code to initialize the lvalue loc with the value |
538 | // of expression e. If isZero is true, assign assumes that loc holds |
539 | // the zero value for its type. |
540 | // |
541 | // This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate |
542 | // better code in some cases, e.g., for composite literals in an |
543 | // addressable location. |
544 | // |
545 | // If sb is not nil, assign generates code to evaluate expression e, but |
546 | // not to update loc. Instead, the necessary stores are appended to the |
547 | // storebuf sb so that they can be executed later. This allows correct |
548 | // in-place update of existing variables when the RHS is a composite |
549 | // literal that may reference parts of the LHS. |
550 | func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) { |
551 | // Can we initialize it in place? |
552 | if e, ok := unparen(e).(*ast.CompositeLit); ok { |
553 | // A CompositeLit never evaluates to a pointer, |
554 | // so if the type of the location is a pointer, |
555 | // an &-operation is implied. |
556 | if _, ok := loc.(blank); !ok { // avoid calling blank.typ() |
557 | if isPointer(loc.typ()) { |
558 | ptr := b.addr(fn, e, true).address(fn) |
559 | // copy address |
560 | if sb != nil { |
561 | sb.store(loc, ptr) |
562 | } else { |
563 | loc.store(fn, ptr) |
564 | } |
565 | return |
566 | } |
567 | } |
568 | |
569 | if _, ok := loc.(*address); ok { |
570 | if isNonTypeParamInterface(loc.typ()) { |
571 | // e.g. var x interface{} = T{...} |
572 | // Can't in-place initialize an interface value. |
573 | // Fall back to copying. |
574 | } else { |
575 | // x = T{...} or x := T{...} |
576 | addr := loc.address(fn) |
577 | if sb != nil { |
578 | b.compLit(fn, addr, e, isZero, sb) |
579 | } else { |
580 | var sb storebuf |
581 | b.compLit(fn, addr, e, isZero, &sb) |
582 | sb.emit(fn) |
583 | } |
584 | |
585 | // Subtle: emit debug ref for aggregate types only; |
586 | // slice and map are handled by store ops in compLit. |
587 | switch loc.typ().Underlying().(type) { |
588 | case *types.Struct, *types.Array: |
589 | emitDebugRef(fn, e, addr, true) |
590 | } |
591 | |
592 | return |
593 | } |
594 | } |
595 | } |
596 | |
597 | // simple case: just copy |
598 | rhs := b.expr(fn, e) |
599 | if sb != nil { |
600 | sb.store(loc, rhs) |
601 | } else { |
602 | loc.store(fn, rhs) |
603 | } |
604 | } |
605 | |
606 | // expr lowers a single-result expression e to SSA form, emitting code |
607 | // to fn and returning the Value defined by the expression. |
608 | func (b *builder) expr(fn *Function, e ast.Expr) Value { |
609 | e = unparen(e) |
610 | |
611 | tv := fn.info.Types[e] |
612 | |
613 | // Is expression a constant? |
614 | if tv.Value != nil { |
615 | return NewConst(tv.Value, fn.typ(tv.Type)) |
616 | } |
617 | |
618 | var v Value |
619 | if tv.Addressable() { |
620 | // Prefer pointer arithmetic ({Index,Field}Addr) followed |
621 | // by Load over subelement extraction (e.g. Index, Field), |
622 | // to avoid large copies. |
623 | v = b.addr(fn, e, false).load(fn) |
624 | } else { |
625 | v = b.expr0(fn, e, tv) |
626 | } |
627 | if fn.debugInfo() { |
628 | emitDebugRef(fn, e, v, false) |
629 | } |
630 | return v |
631 | } |
632 | |
633 | func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value { |
634 | switch e := e.(type) { |
635 | case *ast.BasicLit: |
636 | panic("non-constant BasicLit") // unreachable |
637 | |
638 | case *ast.FuncLit: |
639 | fn2 := &Function{ |
640 | name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)), |
641 | Signature: fn.typeOf(e.Type).(*types.Signature), |
642 | pos: e.Type.Func, |
643 | parent: fn, |
644 | anonIdx: int32(len(fn.AnonFuncs)), |
645 | Pkg: fn.Pkg, |
646 | Prog: fn.Prog, |
647 | syntax: e, |
648 | topLevelOrigin: nil, // use anonIdx to lookup an anon instance's origin. |
649 | typeparams: fn.typeparams, // share the parent's type parameters. |
650 | typeargs: fn.typeargs, // share the parent's type arguments. |
651 | info: fn.info, |
652 | subst: fn.subst, // share the parent's type substitutions. |
653 | } |
654 | fn.AnonFuncs = append(fn.AnonFuncs, fn2) |
655 | b.created.Add(fn2) |
656 | b.buildFunctionBody(fn2) |
657 | // fn2 is not done BUILDing. fn2.referrers can still be updated. |
658 | // fn2 is done BUILDing after fn.finishBody(). |
659 | if fn2.FreeVars == nil { |
660 | return fn2 |
661 | } |
662 | v := &MakeClosure{Fn: fn2} |
663 | v.setType(fn.typ(tv.Type)) |
664 | for _, fv := range fn2.FreeVars { |
665 | v.Bindings = append(v.Bindings, fv.outer) |
666 | fv.outer = nil |
667 | } |
668 | return fn.emit(v) |
669 | |
670 | case *ast.TypeAssertExpr: // single-result form only |
671 | return emitTypeAssert(fn, b.expr(fn, e.X), fn.typ(tv.Type), e.Lparen) |
672 | |
673 | case *ast.CallExpr: |
674 | if fn.info.Types[e.Fun].IsType() { |
675 | // Explicit type conversion, e.g. string(x) or big.Int(x) |
676 | x := b.expr(fn, e.Args[0]) |
677 | y := emitConv(fn, x, fn.typ(tv.Type)) |
678 | if y != x { |
679 | switch y := y.(type) { |
680 | case *Convert: |
681 | y.pos = e.Lparen |
682 | case *ChangeType: |
683 | y.pos = e.Lparen |
684 | case *MakeInterface: |
685 | y.pos = e.Lparen |
686 | case *SliceToArrayPointer: |
687 | y.pos = e.Lparen |
688 | case *UnOp: // conversion from slice to array. |
689 | y.pos = e.Lparen |
690 | } |
691 | } |
692 | return y |
693 | } |
694 | // Call to "intrinsic" built-ins, e.g. new, make, panic. |
695 | if id, ok := unparen(e.Fun).(*ast.Ident); ok { |
696 | if obj, ok := fn.info.Uses[id].(*types.Builtin); ok { |
697 | if v := b.builtin(fn, obj, e.Args, fn.typ(tv.Type), e.Lparen); v != nil { |
698 | return v |
699 | } |
700 | } |
701 | } |
702 | // Regular function call. |
703 | var v Call |
704 | b.setCall(fn, e, &v.Call) |
705 | v.setType(fn.typ(tv.Type)) |
706 | return fn.emit(&v) |
707 | |
708 | case *ast.UnaryExpr: |
709 | switch e.Op { |
710 | case token.AND: // &X --- potentially escaping. |
711 | addr := b.addr(fn, e.X, true) |
712 | if _, ok := unparen(e.X).(*ast.StarExpr); ok { |
713 | // &*p must panic if p is nil (http://golang.org/s/go12nil). |
714 | // For simplicity, we'll just (suboptimally) rely |
715 | // on the side effects of a load. |
716 | // TODO(adonovan): emit dedicated nilcheck. |
717 | addr.load(fn) |
718 | } |
719 | return addr.address(fn) |
720 | case token.ADD: |
721 | return b.expr(fn, e.X) |
722 | case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^ |
723 | v := &UnOp{ |
724 | Op: e.Op, |
725 | X: b.expr(fn, e.X), |
726 | } |
727 | v.setPos(e.OpPos) |
728 | v.setType(fn.typ(tv.Type)) |
729 | return fn.emit(v) |
730 | default: |
731 | panic(e.Op) |
732 | } |
733 | |
734 | case *ast.BinaryExpr: |
735 | switch e.Op { |
736 | case token.LAND, token.LOR: |
737 | return b.logicalBinop(fn, e) |
738 | case token.SHL, token.SHR: |
739 | fallthrough |
740 | case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: |
741 | return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.typ(tv.Type), e.OpPos) |
742 | |
743 | case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ: |
744 | cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos) |
745 | // The type of x==y may be UntypedBool. |
746 | return emitConv(fn, cmp, types.Default(fn.typ(tv.Type))) |
747 | default: |
748 | panic("illegal op in BinaryExpr: " + e.Op.String()) |
749 | } |
750 | |
751 | case *ast.SliceExpr: |
752 | var low, high, max Value |
753 | var x Value |
754 | xtyp := fn.typeOf(e.X) |
755 | switch typeparams.CoreType(xtyp).(type) { |
756 | case *types.Array: |
757 | // Potentially escaping. |
758 | x = b.addr(fn, e.X, true).address(fn) |
759 | case *types.Basic, *types.Slice, *types.Pointer: // *array |
760 | x = b.expr(fn, e.X) |
761 | default: |
762 | // core type exception? |
763 | if isBytestring(xtyp) { |
764 | x = b.expr(fn, e.X) // bytestring is handled as string and []byte. |
765 | } else { |
766 | panic("unexpected sequence type in SliceExpr") |
767 | } |
768 | } |
769 | if e.Low != nil { |
770 | low = b.expr(fn, e.Low) |
771 | } |
772 | if e.High != nil { |
773 | high = b.expr(fn, e.High) |
774 | } |
775 | if e.Slice3 { |
776 | max = b.expr(fn, e.Max) |
777 | } |
778 | v := &Slice{ |
779 | X: x, |
780 | Low: low, |
781 | High: high, |
782 | Max: max, |
783 | } |
784 | v.setPos(e.Lbrack) |
785 | v.setType(fn.typ(tv.Type)) |
786 | return fn.emit(v) |
787 | |
788 | case *ast.Ident: |
789 | obj := fn.info.Uses[e] |
790 | // Universal built-in or nil? |
791 | switch obj := obj.(type) { |
792 | case *types.Builtin: |
793 | return &Builtin{name: obj.Name(), sig: fn.instanceType(e).(*types.Signature)} |
794 | case *types.Nil: |
795 | return zeroConst(fn.instanceType(e)) |
796 | } |
797 | // Package-level func or var? |
798 | if v := fn.Prog.packageLevelMember(obj); v != nil { |
799 | if g, ok := v.(*Global); ok { |
800 | return emitLoad(fn, g) // var (address) |
801 | } |
802 | callee := v.(*Function) // (func) |
803 | if callee.typeparams.Len() > 0 { |
804 | targs := fn.subst.types(instanceArgs(fn.info, e)) |
805 | callee = fn.Prog.needsInstance(callee, targs, b.created) |
806 | } |
807 | return callee |
808 | } |
809 | // Local var. |
810 | return emitLoad(fn, fn.lookup(obj, false)) // var (address) |
811 | |
812 | case *ast.SelectorExpr: |
813 | sel := fn.selection(e) |
814 | if sel == nil { |
815 | // builtin unsafe.{Add,Slice} |
816 | if obj, ok := fn.info.Uses[e.Sel].(*types.Builtin); ok { |
817 | return &Builtin{name: obj.Name(), sig: fn.typ(tv.Type).(*types.Signature)} |
818 | } |
819 | // qualified identifier |
820 | return b.expr(fn, e.Sel) |
821 | } |
822 | switch sel.kind { |
823 | case types.MethodExpr: |
824 | // (*T).f or T.f, the method f from the method-set of type T. |
825 | // The result is a "thunk". |
826 | thunk := makeThunk(fn.Prog, sel, b.created) |
827 | return emitConv(fn, thunk, fn.typ(tv.Type)) |
828 | |
829 | case types.MethodVal: |
830 | // e.f where e is an expression and f is a method. |
831 | // The result is a "bound". |
832 | obj := sel.obj.(*types.Func) |
833 | rt := fn.typ(recvType(obj)) |
834 | wantAddr := isPointer(rt) |
835 | escaping := true |
836 | v := b.receiver(fn, e.X, wantAddr, escaping, sel) |
837 | |
838 | if types.IsInterface(rt) { |
839 | // If v may be an interface type I (after instantiating), |
840 | // we must emit a check that v is non-nil. |
841 | if recv, ok := sel.recv.(*typeparams.TypeParam); ok { |
842 | // Emit a nil check if any possible instantiation of the |
843 | // type parameter is an interface type. |
844 | if typeSetOf(recv).Len() > 0 { |
845 | // recv has a concrete term its typeset. |
846 | // So it cannot be instantiated as an interface. |
847 | // |
848 | // Example: |
849 | // func _[T interface{~int; Foo()}] () { |
850 | // var v T |
851 | // _ = v.Foo // <-- MethodVal |
852 | // } |
853 | } else { |
854 | // rt may be instantiated as an interface. |
855 | // Emit nil check: typeassert (any(v)).(any). |
856 | emitTypeAssert(fn, emitConv(fn, v, tEface), tEface, token.NoPos) |
857 | } |
858 | } else { |
859 | // non-type param interface |
860 | // Emit nil check: typeassert v.(I). |
861 | emitTypeAssert(fn, v, rt, token.NoPos) |
862 | } |
863 | } |
864 | if targs := receiverTypeArgs(obj); len(targs) > 0 { |
865 | // obj is generic. |
866 | obj = fn.Prog.canon.instantiateMethod(obj, fn.subst.types(targs), fn.Prog.ctxt) |
867 | } |
868 | c := &MakeClosure{ |
869 | Fn: makeBound(fn.Prog, obj, b.created), |
870 | Bindings: []Value{v}, |
871 | } |
872 | c.setPos(e.Sel.Pos()) |
873 | c.setType(fn.typ(tv.Type)) |
874 | return fn.emit(c) |
875 | |
876 | case types.FieldVal: |
877 | indices := sel.index |
878 | last := len(indices) - 1 |
879 | v := b.expr(fn, e.X) |
880 | v = emitImplicitSelections(fn, v, indices[:last], e.Pos()) |
881 | v = emitFieldSelection(fn, v, indices[last], false, e.Sel) |
882 | return v |
883 | } |
884 | |
885 | panic("unexpected expression-relative selector") |
886 | |
887 | case *typeparams.IndexListExpr: |
888 | // f[X, Y] must be a generic function |
889 | if !instance(fn.info, e.X) { |
890 | panic("unexpected expression-could not match index list to instantiation") |
891 | } |
892 | return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases. |
893 | |
894 | case *ast.IndexExpr: |
895 | if instance(fn.info, e.X) { |
896 | return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases. |
897 | } |
898 | // not a generic instantiation. |
899 | xt := fn.typeOf(e.X) |
900 | switch et, mode := indexType(xt); mode { |
901 | case ixVar: |
902 | // Addressable slice/array; use IndexAddr and Load. |
903 | return b.addr(fn, e, false).load(fn) |
904 | |
905 | case ixArrVar, ixValue: |
906 | // An array in a register, a string or a combined type that contains |
907 | // either an [_]array (ixArrVar) or string (ixValue). |
908 | |
909 | // Note: for ixArrVar and CoreType(xt)==nil can be IndexAddr and Load. |
910 | index := b.expr(fn, e.Index) |
911 | if isUntyped(index.Type()) { |
912 | index = emitConv(fn, index, tInt) |
913 | } |
914 | v := &Index{ |
915 | X: b.expr(fn, e.X), |
916 | Index: index, |
917 | } |
918 | v.setPos(e.Lbrack) |
919 | v.setType(et) |
920 | return fn.emit(v) |
921 | |
922 | case ixMap: |
923 | ct := typeparams.CoreType(xt).(*types.Map) |
924 | v := &Lookup{ |
925 | X: b.expr(fn, e.X), |
926 | Index: emitConv(fn, b.expr(fn, e.Index), ct.Key()), |
927 | } |
928 | v.setPos(e.Lbrack) |
929 | v.setType(ct.Elem()) |
930 | return fn.emit(v) |
931 | default: |
932 | panic("unexpected container type in IndexExpr: " + xt.String()) |
933 | } |
934 | |
935 | case *ast.CompositeLit, *ast.StarExpr: |
936 | // Addressable types (lvalues) |
937 | return b.addr(fn, e, false).load(fn) |
938 | } |
939 | |
940 | panic(fmt.Sprintf("unexpected expr: %T", e)) |
941 | } |
942 | |
943 | // stmtList emits to fn code for all statements in list. |
944 | func (b *builder) stmtList(fn *Function, list []ast.Stmt) { |
945 | for _, s := range list { |
946 | b.stmt(fn, s) |
947 | } |
948 | } |
949 | |
950 | // receiver emits to fn code for expression e in the "receiver" |
951 | // position of selection e.f (where f may be a field or a method) and |
952 | // returns the effective receiver after applying the implicit field |
953 | // selections of sel. |
954 | // |
955 | // wantAddr requests that the result is an an address. If |
956 | // !sel.indirect, this may require that e be built in addr() mode; it |
957 | // must thus be addressable. |
958 | // |
959 | // escaping is defined as per builder.addr(). |
960 | func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *selection) Value { |
961 | var v Value |
962 | if wantAddr && !sel.indirect && !isPointer(fn.typeOf(e)) { |
963 | v = b.addr(fn, e, escaping).address(fn) |
964 | } else { |
965 | v = b.expr(fn, e) |
966 | } |
967 | |
968 | last := len(sel.index) - 1 |
969 | // The position of implicit selection is the position of the inducing receiver expression. |
970 | v = emitImplicitSelections(fn, v, sel.index[:last], e.Pos()) |
971 | if !wantAddr && isPointer(v.Type()) { |
972 | v = emitLoad(fn, v) |
973 | } |
974 | return v |
975 | } |
976 | |
977 | // setCallFunc populates the function parts of a CallCommon structure |
978 | // (Func, Method, Recv, Args[0]) based on the kind of invocation |
979 | // occurring in e. |
980 | func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) { |
981 | c.pos = e.Lparen |
982 | |
983 | // Is this a method call? |
984 | if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok { |
985 | sel := fn.selection(selector) |
986 | if sel != nil && sel.kind == types.MethodVal { |
987 | obj := sel.obj.(*types.Func) |
988 | recv := recvType(obj) |
989 | |
990 | wantAddr := isPointer(recv) |
991 | escaping := true |
992 | v := b.receiver(fn, selector.X, wantAddr, escaping, sel) |
993 | if types.IsInterface(recv) { |
994 | // Invoke-mode call. |
995 | c.Value = v // possibly type param |
996 | c.Method = obj |
997 | } else { |
998 | // "Call"-mode call. |
999 | callee := fn.Prog.originFunc(obj) |
1000 | if callee.typeparams.Len() > 0 { |
1001 | callee = fn.Prog.needsInstance(callee, receiverTypeArgs(obj), b.created) |
1002 | } |
1003 | c.Value = callee |
1004 | c.Args = append(c.Args, v) |
1005 | } |
1006 | return |
1007 | } |
1008 | |
1009 | // sel.kind==MethodExpr indicates T.f() or (*T).f(): |
1010 | // a statically dispatched call to the method f in the |
1011 | // method-set of T or *T. T may be an interface. |
1012 | // |
1013 | // e.Fun would evaluate to a concrete method, interface |
1014 | // wrapper function, or promotion wrapper. |
1015 | // |
1016 | // For now, we evaluate it in the usual way. |
1017 | // |
1018 | // TODO(adonovan): opt: inline expr() here, to make the |
1019 | // call static and to avoid generation of wrappers. |
1020 | // It's somewhat tricky as it may consume the first |
1021 | // actual parameter if the call is "invoke" mode. |
1022 | // |
1023 | // Examples: |
1024 | // type T struct{}; func (T) f() {} // "call" mode |
1025 | // type T interface { f() } // "invoke" mode |
1026 | // |
1027 | // type S struct{ T } |
1028 | // |
1029 | // var s S |
1030 | // S.f(s) |
1031 | // (*S).f(&s) |
1032 | // |
1033 | // Suggested approach: |
1034 | // - consume the first actual parameter expression |
1035 | // and build it with b.expr(). |
1036 | // - apply implicit field selections. |
1037 | // - use MethodVal logic to populate fields of c. |
1038 | } |
1039 | |
1040 | // Evaluate the function operand in the usual way. |
1041 | c.Value = b.expr(fn, e.Fun) |
1042 | } |
1043 | |
1044 | // emitCallArgs emits to f code for the actual parameters of call e to |
1045 | // a (possibly built-in) function of effective type sig. |
1046 | // The argument values are appended to args, which is then returned. |
1047 | func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value { |
1048 | // f(x, y, z...): pass slice z straight through. |
1049 | if e.Ellipsis != 0 { |
1050 | for i, arg := range e.Args { |
1051 | v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type()) |
1052 | args = append(args, v) |
1053 | } |
1054 | return args |
1055 | } |
1056 | |
1057 | offset := len(args) // 1 if call has receiver, 0 otherwise |
1058 | |
1059 | // Evaluate actual parameter expressions. |
1060 | // |
1061 | // If this is a chained call of the form f(g()) where g has |
1062 | // multiple return values (MRV), they are flattened out into |
1063 | // args; a suffix of them may end up in a varargs slice. |
1064 | for _, arg := range e.Args { |
1065 | v := b.expr(fn, arg) |
1066 | if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain |
1067 | for i, n := 0, ttuple.Len(); i < n; i++ { |
1068 | args = append(args, emitExtract(fn, v, i)) |
1069 | } |
1070 | } else { |
1071 | args = append(args, v) |
1072 | } |
1073 | } |
1074 | |
1075 | // Actual->formal assignability conversions for normal parameters. |
1076 | np := sig.Params().Len() // number of normal parameters |
1077 | if sig.Variadic() { |
1078 | np-- |
1079 | } |
1080 | for i := 0; i < np; i++ { |
1081 | args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type()) |
1082 | } |
1083 | |
1084 | // Actual->formal assignability conversions for variadic parameter, |
1085 | // and construction of slice. |
1086 | if sig.Variadic() { |
1087 | varargs := args[offset+np:] |
1088 | st := sig.Params().At(np).Type().(*types.Slice) |
1089 | vt := st.Elem() |
1090 | if len(varargs) == 0 { |
1091 | args = append(args, zeroConst(st)) |
1092 | } else { |
1093 | // Replace a suffix of args with a slice containing it. |
1094 | at := types.NewArray(vt, int64(len(varargs))) |
1095 | a := emitNew(fn, at, token.NoPos) |
1096 | a.setPos(e.Rparen) |
1097 | a.Comment = "varargs" |
1098 | for i, arg := range varargs { |
1099 | iaddr := &IndexAddr{ |
1100 | X: a, |
1101 | Index: intConst(int64(i)), |
1102 | } |
1103 | iaddr.setType(types.NewPointer(vt)) |
1104 | fn.emit(iaddr) |
1105 | emitStore(fn, iaddr, arg, arg.Pos()) |
1106 | } |
1107 | s := &Slice{X: a} |
1108 | s.setType(st) |
1109 | args[offset+np] = fn.emit(s) |
1110 | args = args[:offset+np+1] |
1111 | } |
1112 | } |
1113 | return args |
1114 | } |
1115 | |
1116 | // setCall emits to fn code to evaluate all the parameters of a function |
1117 | // call e, and populates *c with those values. |
1118 | func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) { |
1119 | // First deal with the f(...) part and optional receiver. |
1120 | b.setCallFunc(fn, e, c) |
1121 | |
1122 | // Then append the other actual parameters. |
1123 | sig, _ := typeparams.CoreType(fn.typeOf(e.Fun)).(*types.Signature) |
1124 | if sig == nil { |
1125 | panic(fmt.Sprintf("no signature for call of %s", e.Fun)) |
1126 | } |
1127 | c.Args = b.emitCallArgs(fn, sig, e, c.Args) |
1128 | } |
1129 | |
1130 | // assignOp emits to fn code to perform loc <op>= val. |
1131 | func (b *builder) assignOp(fn *Function, loc lvalue, val Value, op token.Token, pos token.Pos) { |
1132 | loc.store(fn, emitArith(fn, op, loc.load(fn), val, loc.typ(), pos)) |
1133 | } |
1134 | |
1135 | // localValueSpec emits to fn code to define all of the vars in the |
1136 | // function-local ValueSpec, spec. |
1137 | func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) { |
1138 | switch { |
1139 | case len(spec.Values) == len(spec.Names): |
1140 | // e.g. var x, y = 0, 1 |
1141 | // 1:1 assignment |
1142 | for i, id := range spec.Names { |
1143 | if !isBlankIdent(id) { |
1144 | fn.addLocalForIdent(id) |
1145 | } |
1146 | lval := b.addr(fn, id, false) // non-escaping |
1147 | b.assign(fn, lval, spec.Values[i], true, nil) |
1148 | } |
1149 | |
1150 | case len(spec.Values) == 0: |
1151 | // e.g. var x, y int |
1152 | // Locals are implicitly zero-initialized. |
1153 | for _, id := range spec.Names { |
1154 | if !isBlankIdent(id) { |
1155 | lhs := fn.addLocalForIdent(id) |
1156 | if fn.debugInfo() { |
1157 | emitDebugRef(fn, id, lhs, true) |
1158 | } |
1159 | } |
1160 | } |
1161 | |
1162 | default: |
1163 | // e.g. var x, y = pos() |
1164 | tuple := b.exprN(fn, spec.Values[0]) |
1165 | for i, id := range spec.Names { |
1166 | if !isBlankIdent(id) { |
1167 | fn.addLocalForIdent(id) |
1168 | lhs := b.addr(fn, id, false) // non-escaping |
1169 | lhs.store(fn, emitExtract(fn, tuple, i)) |
1170 | } |
1171 | } |
1172 | } |
1173 | } |
1174 | |
1175 | // assignStmt emits code to fn for a parallel assignment of rhss to lhss. |
1176 | // isDef is true if this is a short variable declaration (:=). |
1177 | // |
1178 | // Note the similarity with localValueSpec. |
1179 | func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) { |
1180 | // Side effects of all LHSs and RHSs must occur in left-to-right order. |
1181 | lvals := make([]lvalue, len(lhss)) |
1182 | isZero := make([]bool, len(lhss)) |
1183 | for i, lhs := range lhss { |
1184 | var lval lvalue = blank{} |
1185 | if !isBlankIdent(lhs) { |
1186 | if isDef { |
1187 | if obj := fn.info.Defs[lhs.(*ast.Ident)]; obj != nil { |
1188 | fn.addNamedLocal(obj) |
1189 | isZero[i] = true |
1190 | } |
1191 | } |
1192 | lval = b.addr(fn, lhs, false) // non-escaping |
1193 | } |
1194 | lvals[i] = lval |
1195 | } |
1196 | if len(lhss) == len(rhss) { |
1197 | // Simple assignment: x = f() (!isDef) |
1198 | // Parallel assignment: x, y = f(), g() (!isDef) |
1199 | // or short var decl: x, y := f(), g() (isDef) |
1200 | // |
1201 | // In all cases, the RHSs may refer to the LHSs, |
1202 | // so we need a storebuf. |
1203 | var sb storebuf |
1204 | for i := range rhss { |
1205 | b.assign(fn, lvals[i], rhss[i], isZero[i], &sb) |
1206 | } |
1207 | sb.emit(fn) |
1208 | } else { |
1209 | // e.g. x, y = pos() |
1210 | tuple := b.exprN(fn, rhss[0]) |
1211 | emitDebugRef(fn, rhss[0], tuple, false) |
1212 | for i, lval := range lvals { |
1213 | lval.store(fn, emitExtract(fn, tuple, i)) |
1214 | } |
1215 | } |
1216 | } |
1217 | |
1218 | // arrayLen returns the length of the array whose composite literal elements are elts. |
1219 | func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 { |
1220 | var max int64 = -1 |
1221 | var i int64 = -1 |
1222 | for _, e := range elts { |
1223 | if kv, ok := e.(*ast.KeyValueExpr); ok { |
1224 | i = b.expr(fn, kv.Key).(*Const).Int64() |
1225 | } else { |
1226 | i++ |
1227 | } |
1228 | if i > max { |
1229 | max = i |
1230 | } |
1231 | } |
1232 | return max + 1 |
1233 | } |
1234 | |
1235 | // compLit emits to fn code to initialize a composite literal e at |
1236 | // address addr with type typ. |
1237 | // |
1238 | // Nested composite literals are recursively initialized in place |
1239 | // where possible. If isZero is true, compLit assumes that addr |
1240 | // holds the zero value for typ. |
1241 | // |
1242 | // Because the elements of a composite literal may refer to the |
1243 | // variables being updated, as in the second line below, |
1244 | // |
1245 | // x := T{a: 1} |
1246 | // x = T{a: x.a} |
1247 | // |
1248 | // all the reads must occur before all the writes. Thus all stores to |
1249 | // loc are emitted to the storebuf sb for later execution. |
1250 | // |
1251 | // A CompositeLit may have pointer type only in the recursive (nested) |
1252 | // case when the type name is implicit. e.g. in []*T{{}}, the inner |
1253 | // literal has type *T behaves like &T{}. |
1254 | // In that case, addr must hold a T, not a *T. |
1255 | func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) { |
1256 | typ := deref(fn.typeOf(e)) // type with name [may be type param] |
1257 | t := deref(typeparams.CoreType(typ)).Underlying() // core type for comp lit case |
1258 | // Computing typ and t is subtle as these handle pointer types. |
1259 | // For example, &T{...} is valid even for maps and slices. |
1260 | // Also typ should refer to T (not *T) while t should be the core type of T. |
1261 | // |
1262 | // To show the ordering to take into account, consider the composite literal |
1263 | // expressions `&T{f: 1}` and `{f: 1}` within the expression `[]S{{f: 1}}` here: |
1264 | // type N struct{f int} |
1265 | // func _[T N, S *N]() { |
1266 | // _ = &T{f: 1} |
1267 | // _ = []S{{f: 1}} |
1268 | // } |
1269 | // For `&T{f: 1}`, we compute `typ` and `t` as: |
1270 | // typeOf(&T{f: 1}) == *T |
1271 | // deref(*T) == T (typ) |
1272 | // CoreType(T) == N |
1273 | // deref(N) == N |
1274 | // N.Underlying() == struct{f int} (t) |
1275 | // For `{f: 1}` in `[]S{{f: 1}}`, we compute `typ` and `t` as: |
1276 | // typeOf({f: 1}) == S |
1277 | // deref(S) == S (typ) |
1278 | // CoreType(S) == *N |
1279 | // deref(*N) == N |
1280 | // N.Underlying() == struct{f int} (t) |
1281 | switch t := t.(type) { |
1282 | case *types.Struct: |
1283 | if !isZero && len(e.Elts) != t.NumFields() { |
1284 | // memclear |
1285 | sb.store(&address{addr, e.Lbrace, nil}, |
1286 | zeroValue(fn, deref(addr.Type()))) |
1287 | isZero = true |
1288 | } |
1289 | for i, e := range e.Elts { |
1290 | fieldIndex := i |
1291 | pos := e.Pos() |
1292 | if kv, ok := e.(*ast.KeyValueExpr); ok { |
1293 | fname := kv.Key.(*ast.Ident).Name |
1294 | for i, n := 0, t.NumFields(); i < n; i++ { |
1295 | sf := t.Field(i) |
1296 | if sf.Name() == fname { |
1297 | fieldIndex = i |
1298 | pos = kv.Colon |
1299 | e = kv.Value |
1300 | break |
1301 | } |
1302 | } |
1303 | } |
1304 | sf := t.Field(fieldIndex) |
1305 | faddr := &FieldAddr{ |
1306 | X: addr, |
1307 | Field: fieldIndex, |
1308 | } |
1309 | faddr.setPos(pos) |
1310 | faddr.setType(types.NewPointer(sf.Type())) |
1311 | fn.emit(faddr) |
1312 | b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb) |
1313 | } |
1314 | |
1315 | case *types.Array, *types.Slice: |
1316 | var at *types.Array |
1317 | var array Value |
1318 | switch t := t.(type) { |
1319 | case *types.Slice: |
1320 | at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts)) |
1321 | alloc := emitNew(fn, at, e.Lbrace) |
1322 | alloc.Comment = "slicelit" |
1323 | array = alloc |
1324 | case *types.Array: |
1325 | at = t |
1326 | array = addr |
1327 | |
1328 | if !isZero && int64(len(e.Elts)) != at.Len() { |
1329 | // memclear |
1330 | sb.store(&address{array, e.Lbrace, nil}, |
1331 | zeroValue(fn, deref(array.Type()))) |
1332 | } |
1333 | } |
1334 | |
1335 | var idx *Const |
1336 | for _, e := range e.Elts { |
1337 | pos := e.Pos() |
1338 | if kv, ok := e.(*ast.KeyValueExpr); ok { |
1339 | idx = b.expr(fn, kv.Key).(*Const) |
1340 | pos = kv.Colon |
1341 | e = kv.Value |
1342 | } else { |
1343 | var idxval int64 |
1344 | if idx != nil { |
1345 | idxval = idx.Int64() + 1 |
1346 | } |
1347 | idx = intConst(idxval) |
1348 | } |
1349 | iaddr := &IndexAddr{ |
1350 | X: array, |
1351 | Index: idx, |
1352 | } |
1353 | iaddr.setType(types.NewPointer(at.Elem())) |
1354 | fn.emit(iaddr) |
1355 | if t != at { // slice |
1356 | // backing array is unaliased => storebuf not needed. |
1357 | b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil) |
1358 | } else { |
1359 | b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb) |
1360 | } |
1361 | } |
1362 | |
1363 | if t != at { // slice |
1364 | s := &Slice{X: array} |
1365 | s.setPos(e.Lbrace) |
1366 | s.setType(typ) |
1367 | sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s)) |
1368 | } |
1369 | |
1370 | case *types.Map: |
1371 | m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))} |
1372 | m.setPos(e.Lbrace) |
1373 | m.setType(typ) |
1374 | fn.emit(m) |
1375 | for _, e := range e.Elts { |
1376 | e := e.(*ast.KeyValueExpr) |
1377 | |
1378 | // If a key expression in a map literal is itself a |
1379 | // composite literal, the type may be omitted. |
1380 | // For example: |
1381 | // map[*struct{}]bool{{}: true} |
1382 | // An &-operation may be implied: |
1383 | // map[*struct{}]bool{&struct{}{}: true} |
1384 | var key Value |
1385 | if _, ok := unparen(e.Key).(*ast.CompositeLit); ok && isPointer(t.Key()) { |
1386 | // A CompositeLit never evaluates to a pointer, |
1387 | // so if the type of the location is a pointer, |
1388 | // an &-operation is implied. |
1389 | key = b.addr(fn, e.Key, true).address(fn) |
1390 | } else { |
1391 | key = b.expr(fn, e.Key) |
1392 | } |
1393 | |
1394 | loc := element{ |
1395 | m: m, |
1396 | k: emitConv(fn, key, t.Key()), |
1397 | t: t.Elem(), |
1398 | pos: e.Colon, |
1399 | } |
1400 | |
1401 | // We call assign() only because it takes care |
1402 | // of any &-operation required in the recursive |
1403 | // case, e.g., |
1404 | // map[int]*struct{}{0: {}} implies &struct{}{}. |
1405 | // In-place update is of course impossible, |
1406 | // and no storebuf is needed. |
1407 | b.assign(fn, &loc, e.Value, true, nil) |
1408 | } |
1409 | sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m) |
1410 | |
1411 | default: |
1412 | panic("unexpected CompositeLit type: " + t.String()) |
1413 | } |
1414 | } |
1415 | |
1416 | // switchStmt emits to fn code for the switch statement s, optionally |
1417 | // labelled by label. |
1418 | func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) { |
1419 | // We treat SwitchStmt like a sequential if-else chain. |
1420 | // Multiway dispatch can be recovered later by ssautil.Switches() |
1421 | // to those cases that are free of side effects. |
1422 | if s.Init != nil { |
1423 | b.stmt(fn, s.Init) |
1424 | } |
1425 | var tag Value = vTrue |
1426 | if s.Tag != nil { |
1427 | tag = b.expr(fn, s.Tag) |
1428 | } |
1429 | done := fn.newBasicBlock("switch.done") |
1430 | if label != nil { |
1431 | label._break = done |
1432 | } |
1433 | // We pull the default case (if present) down to the end. |
1434 | // But each fallthrough label must point to the next |
1435 | // body block in source order, so we preallocate a |
1436 | // body block (fallthru) for the next case. |
1437 | // Unfortunately this makes for a confusing block order. |
1438 | var dfltBody *[]ast.Stmt |
1439 | var dfltFallthrough *BasicBlock |
1440 | var fallthru, dfltBlock *BasicBlock |
1441 | ncases := len(s.Body.List) |
1442 | for i, clause := range s.Body.List { |
1443 | body := fallthru |
1444 | if body == nil { |
1445 | body = fn.newBasicBlock("switch.body") // first case only |
1446 | } |
1447 | |
1448 | // Preallocate body block for the next case. |
1449 | fallthru = done |
1450 | if i+1 < ncases { |
1451 | fallthru = fn.newBasicBlock("switch.body") |
1452 | } |
1453 | |
1454 | cc := clause.(*ast.CaseClause) |
1455 | if cc.List == nil { |
1456 | // Default case. |
1457 | dfltBody = &cc.Body |
1458 | dfltFallthrough = fallthru |
1459 | dfltBlock = body |
1460 | continue |
1461 | } |
1462 | |
1463 | var nextCond *BasicBlock |
1464 | for _, cond := range cc.List { |
1465 | nextCond = fn.newBasicBlock("switch.next") |
1466 | // TODO(adonovan): opt: when tag==vTrue, we'd |
1467 | // get better code if we use b.cond(cond) |
1468 | // instead of BinOp(EQL, tag, b.expr(cond)) |
1469 | // followed by If. Don't forget conversions |
1470 | // though. |
1471 | cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), cond.Pos()) |
1472 | emitIf(fn, cond, body, nextCond) |
1473 | fn.currentBlock = nextCond |
1474 | } |
1475 | fn.currentBlock = body |
1476 | fn.targets = &targets{ |
1477 | tail: fn.targets, |
1478 | _break: done, |
1479 | _fallthrough: fallthru, |
1480 | } |
1481 | b.stmtList(fn, cc.Body) |
1482 | fn.targets = fn.targets.tail |
1483 | emitJump(fn, done) |
1484 | fn.currentBlock = nextCond |
1485 | } |
1486 | if dfltBlock != nil { |
1487 | emitJump(fn, dfltBlock) |
1488 | fn.currentBlock = dfltBlock |
1489 | fn.targets = &targets{ |
1490 | tail: fn.targets, |
1491 | _break: done, |
1492 | _fallthrough: dfltFallthrough, |
1493 | } |
1494 | b.stmtList(fn, *dfltBody) |
1495 | fn.targets = fn.targets.tail |
1496 | } |
1497 | emitJump(fn, done) |
1498 | fn.currentBlock = done |
1499 | } |
1500 | |
1501 | // typeSwitchStmt emits to fn code for the type switch statement s, optionally |
1502 | // labelled by label. |
1503 | func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) { |
1504 | // We treat TypeSwitchStmt like a sequential if-else chain. |
1505 | // Multiway dispatch can be recovered later by ssautil.Switches(). |
1506 | |
1507 | // Typeswitch lowering: |
1508 | // |
1509 | // var x X |
1510 | // switch y := x.(type) { |
1511 | // case T1, T2: S1 // >1 (y := x) |
1512 | // case nil: SN // nil (y := x) |
1513 | // default: SD // 0 types (y := x) |
1514 | // case T3: S3 // 1 type (y := x.(T3)) |
1515 | // } |
1516 | // |
1517 | // ...s.Init... |
1518 | // x := eval x |
1519 | // .caseT1: |
1520 | // t1, ok1 := typeswitch,ok x <T1> |
1521 | // if ok1 then goto S1 else goto .caseT2 |
1522 | // .caseT2: |
1523 | // t2, ok2 := typeswitch,ok x <T2> |
1524 | // if ok2 then goto S1 else goto .caseNil |
1525 | // .S1: |
1526 | // y := x |
1527 | // ...S1... |
1528 | // goto done |
1529 | // .caseNil: |
1530 | // if t2, ok2 := typeswitch,ok x <T2> |
1531 | // if x == nil then goto SN else goto .caseT3 |
1532 | // .SN: |
1533 | // y := x |
1534 | // ...SN... |
1535 | // goto done |
1536 | // .caseT3: |
1537 | // t3, ok3 := typeswitch,ok x <T3> |
1538 | // if ok3 then goto S3 else goto default |
1539 | // .S3: |
1540 | // y := t3 |
1541 | // ...S3... |
1542 | // goto done |
1543 | // .default: |
1544 | // y := x |
1545 | // ...SD... |
1546 | // goto done |
1547 | // .done: |
1548 | if s.Init != nil { |
1549 | b.stmt(fn, s.Init) |
1550 | } |
1551 | |
1552 | var x Value |
1553 | switch ass := s.Assign.(type) { |
1554 | case *ast.ExprStmt: // x.(type) |
1555 | x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X) |
1556 | case *ast.AssignStmt: // y := x.(type) |
1557 | x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X) |
1558 | } |
1559 | |
1560 | done := fn.newBasicBlock("typeswitch.done") |
1561 | if label != nil { |
1562 | label._break = done |
1563 | } |
1564 | var default_ *ast.CaseClause |
1565 | for _, clause := range s.Body.List { |
1566 | cc := clause.(*ast.CaseClause) |
1567 | if cc.List == nil { |
1568 | default_ = cc |
1569 | continue |
1570 | } |
1571 | body := fn.newBasicBlock("typeswitch.body") |
1572 | var next *BasicBlock |
1573 | var casetype types.Type |
1574 | var ti Value // ti, ok := typeassert,ok x <Ti> |
1575 | for _, cond := range cc.List { |
1576 | next = fn.newBasicBlock("typeswitch.next") |
1577 | casetype = fn.typeOf(cond) |
1578 | var condv Value |
1579 | if casetype == tUntypedNil { |
1580 | condv = emitCompare(fn, token.EQL, x, zeroConst(x.Type()), cond.Pos()) |
1581 | ti = x |
1582 | } else { |
1583 | yok := emitTypeTest(fn, x, casetype, cc.Case) |
1584 | ti = emitExtract(fn, yok, 0) |
1585 | condv = emitExtract(fn, yok, 1) |
1586 | } |
1587 | emitIf(fn, condv, body, next) |
1588 | fn.currentBlock = next |
1589 | } |
1590 | if len(cc.List) != 1 { |
1591 | ti = x |
1592 | } |
1593 | fn.currentBlock = body |
1594 | b.typeCaseBody(fn, cc, ti, done) |
1595 | fn.currentBlock = next |
1596 | } |
1597 | if default_ != nil { |
1598 | b.typeCaseBody(fn, default_, x, done) |
1599 | } else { |
1600 | emitJump(fn, done) |
1601 | } |
1602 | fn.currentBlock = done |
1603 | } |
1604 | |
1605 | func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) { |
1606 | if obj := fn.info.Implicits[cc]; obj != nil { |
1607 | // In a switch y := x.(type), each case clause |
1608 | // implicitly declares a distinct object y. |
1609 | // In a single-type case, y has that type. |
1610 | // In multi-type cases, 'case nil' and default, |
1611 | // y has the same type as the interface operand. |
1612 | emitStore(fn, fn.addNamedLocal(obj), x, obj.Pos()) |
1613 | } |
1614 | fn.targets = &targets{ |
1615 | tail: fn.targets, |
1616 | _break: done, |
1617 | } |
1618 | b.stmtList(fn, cc.Body) |
1619 | fn.targets = fn.targets.tail |
1620 | emitJump(fn, done) |
1621 | } |
1622 | |
1623 | // selectStmt emits to fn code for the select statement s, optionally |
1624 | // labelled by label. |
1625 | func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) { |
1626 | // A blocking select of a single case degenerates to a |
1627 | // simple send or receive. |
1628 | // TODO(adonovan): opt: is this optimization worth its weight? |
1629 | if len(s.Body.List) == 1 { |
1630 | clause := s.Body.List[0].(*ast.CommClause) |
1631 | if clause.Comm != nil { |
1632 | b.stmt(fn, clause.Comm) |
1633 | done := fn.newBasicBlock("select.done") |
1634 | if label != nil { |
1635 | label._break = done |
1636 | } |
1637 | fn.targets = &targets{ |
1638 | tail: fn.targets, |
1639 | _break: done, |
1640 | } |
1641 | b.stmtList(fn, clause.Body) |
1642 | fn.targets = fn.targets.tail |
1643 | emitJump(fn, done) |
1644 | fn.currentBlock = done |
1645 | return |
1646 | } |
1647 | } |
1648 | |
1649 | // First evaluate all channels in all cases, and find |
1650 | // the directions of each state. |
1651 | var states []*SelectState |
1652 | blocking := true |
1653 | debugInfo := fn.debugInfo() |
1654 | for _, clause := range s.Body.List { |
1655 | var st *SelectState |
1656 | switch comm := clause.(*ast.CommClause).Comm.(type) { |
1657 | case nil: // default case |
1658 | blocking = false |
1659 | continue |
1660 | |
1661 | case *ast.SendStmt: // ch<- i |
1662 | ch := b.expr(fn, comm.Chan) |
1663 | chtyp := typeparams.CoreType(fn.typ(ch.Type())).(*types.Chan) |
1664 | st = &SelectState{ |
1665 | Dir: types.SendOnly, |
1666 | Chan: ch, |
1667 | Send: emitConv(fn, b.expr(fn, comm.Value), chtyp.Elem()), |
1668 | Pos: comm.Arrow, |
1669 | } |
1670 | if debugInfo { |
1671 | st.DebugNode = comm |
1672 | } |
1673 | |
1674 | case *ast.AssignStmt: // x := <-ch |
1675 | recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr) |
1676 | st = &SelectState{ |
1677 | Dir: types.RecvOnly, |
1678 | Chan: b.expr(fn, recv.X), |
1679 | Pos: recv.OpPos, |
1680 | } |
1681 | if debugInfo { |
1682 | st.DebugNode = recv |
1683 | } |
1684 | |
1685 | case *ast.ExprStmt: // <-ch |
1686 | recv := unparen(comm.X).(*ast.UnaryExpr) |
1687 | st = &SelectState{ |
1688 | Dir: types.RecvOnly, |
1689 | Chan: b.expr(fn, recv.X), |
1690 | Pos: recv.OpPos, |
1691 | } |
1692 | if debugInfo { |
1693 | st.DebugNode = recv |
1694 | } |
1695 | } |
1696 | states = append(states, st) |
1697 | } |
1698 | |
1699 | // We dispatch on the (fair) result of Select using a |
1700 | // sequential if-else chain, in effect: |
1701 | // |
1702 | // idx, recvOk, r0...r_n-1 := select(...) |
1703 | // if idx == 0 { // receive on channel 0 (first receive => r0) |
1704 | // x, ok := r0, recvOk |
1705 | // ...state0... |
1706 | // } else if v == 1 { // send on channel 1 |
1707 | // ...state1... |
1708 | // } else { |
1709 | // ...default... |
1710 | // } |
1711 | sel := &Select{ |
1712 | States: states, |
1713 | Blocking: blocking, |
1714 | } |
1715 | sel.setPos(s.Select) |
1716 | var vars []*types.Var |
1717 | vars = append(vars, varIndex, varOk) |
1718 | for _, st := range states { |
1719 | if st.Dir == types.RecvOnly { |
1720 | chtyp := typeparams.CoreType(fn.typ(st.Chan.Type())).(*types.Chan) |
1721 | vars = append(vars, anonVar(chtyp.Elem())) |
1722 | } |
1723 | } |
1724 | sel.setType(types.NewTuple(vars...)) |
1725 | |
1726 | fn.emit(sel) |
1727 | idx := emitExtract(fn, sel, 0) |
1728 | |
1729 | done := fn.newBasicBlock("select.done") |
1730 | if label != nil { |
1731 | label._break = done |
1732 | } |
1733 | |
1734 | var defaultBody *[]ast.Stmt |
1735 | state := 0 |
1736 | r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV |
1737 | for _, cc := range s.Body.List { |
1738 | clause := cc.(*ast.CommClause) |
1739 | if clause.Comm == nil { |
1740 | defaultBody = &clause.Body |
1741 | continue |
1742 | } |
1743 | body := fn.newBasicBlock("select.body") |
1744 | next := fn.newBasicBlock("select.next") |
1745 | emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next) |
1746 | fn.currentBlock = body |
1747 | fn.targets = &targets{ |
1748 | tail: fn.targets, |
1749 | _break: done, |
1750 | } |
1751 | switch comm := clause.Comm.(type) { |
1752 | case *ast.ExprStmt: // <-ch |
1753 | if debugInfo { |
1754 | v := emitExtract(fn, sel, r) |
1755 | emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false) |
1756 | } |
1757 | r++ |
1758 | |
1759 | case *ast.AssignStmt: // x := <-states[state].Chan |
1760 | if comm.Tok == token.DEFINE { |
1761 | fn.addLocalForIdent(comm.Lhs[0].(*ast.Ident)) |
1762 | } |
1763 | x := b.addr(fn, comm.Lhs[0], false) // non-escaping |
1764 | v := emitExtract(fn, sel, r) |
1765 | if debugInfo { |
1766 | emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false) |
1767 | } |
1768 | x.store(fn, v) |
1769 | |
1770 | if len(comm.Lhs) == 2 { // x, ok := ... |
1771 | if comm.Tok == token.DEFINE { |
1772 | fn.addLocalForIdent(comm.Lhs[1].(*ast.Ident)) |
1773 | } |
1774 | ok := b.addr(fn, comm.Lhs[1], false) // non-escaping |
1775 | ok.store(fn, emitExtract(fn, sel, 1)) |
1776 | } |
1777 | r++ |
1778 | } |
1779 | b.stmtList(fn, clause.Body) |
1780 | fn.targets = fn.targets.tail |
1781 | emitJump(fn, done) |
1782 | fn.currentBlock = next |
1783 | state++ |
1784 | } |
1785 | if defaultBody != nil { |
1786 | fn.targets = &targets{ |
1787 | tail: fn.targets, |
1788 | _break: done, |
1789 | } |
1790 | b.stmtList(fn, *defaultBody) |
1791 | fn.targets = fn.targets.tail |
1792 | } else { |
1793 | // A blocking select must match some case. |
1794 | // (This should really be a runtime.errorString, not a string.) |
1795 | fn.emit(&Panic{ |
1796 | X: emitConv(fn, stringConst("blocking select matched no case"), tEface), |
1797 | }) |
1798 | fn.currentBlock = fn.newBasicBlock("unreachable") |
1799 | } |
1800 | emitJump(fn, done) |
1801 | fn.currentBlock = done |
1802 | } |
1803 | |
1804 | // forStmt emits to fn code for the for statement s, optionally |
1805 | // labelled by label. |
1806 | func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) { |
1807 | // ...init... |
1808 | // jump loop |
1809 | // loop: |
1810 | // if cond goto body else done |
1811 | // body: |
1812 | // ...body... |
1813 | // jump post |
1814 | // post: (target of continue) |
1815 | // ...post... |
1816 | // jump loop |
1817 | // done: (target of break) |
1818 | if s.Init != nil { |
1819 | b.stmt(fn, s.Init) |
1820 | } |
1821 | body := fn.newBasicBlock("for.body") |
1822 | done := fn.newBasicBlock("for.done") // target of 'break' |
1823 | loop := body // target of back-edge |
1824 | if s.Cond != nil { |
1825 | loop = fn.newBasicBlock("for.loop") |
1826 | } |
1827 | cont := loop // target of 'continue' |
1828 | if s.Post != nil { |
1829 | cont = fn.newBasicBlock("for.post") |
1830 | } |
1831 | if label != nil { |
1832 | label._break = done |
1833 | label._continue = cont |
1834 | } |
1835 | emitJump(fn, loop) |
1836 | fn.currentBlock = loop |
1837 | if loop != body { |
1838 | b.cond(fn, s.Cond, body, done) |
1839 | fn.currentBlock = body |
1840 | } |
1841 | fn.targets = &targets{ |
1842 | tail: fn.targets, |
1843 | _break: done, |
1844 | _continue: cont, |
1845 | } |
1846 | b.stmt(fn, s.Body) |
1847 | fn.targets = fn.targets.tail |
1848 | emitJump(fn, cont) |
1849 | |
1850 | if s.Post != nil { |
1851 | fn.currentBlock = cont |
1852 | b.stmt(fn, s.Post) |
1853 | emitJump(fn, loop) // back-edge |
1854 | } |
1855 | fn.currentBlock = done |
1856 | } |
1857 | |
1858 | // rangeIndexed emits to fn the header for an integer-indexed loop |
1859 | // over array, *array or slice value x. |
1860 | // The v result is defined only if tv is non-nil. |
1861 | // forPos is the position of the "for" token. |
1862 | func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) { |
1863 | // |
1864 | // length = len(x) |
1865 | // index = -1 |
1866 | // loop: (target of continue) |
1867 | // index++ |
1868 | // if index < length goto body else done |
1869 | // body: |
1870 | // k = index |
1871 | // v = x[index] |
1872 | // ...body... |
1873 | // jump loop |
1874 | // done: (target of break) |
1875 | |
1876 | // Determine number of iterations. |
1877 | var length Value |
1878 | if arr, ok := deref(x.Type()).Underlying().(*types.Array); ok { |
1879 | // For array or *array, the number of iterations is |
1880 | // known statically thanks to the type. We avoid a |
1881 | // data dependence upon x, permitting later dead-code |
1882 | // elimination if x is pure, static unrolling, etc. |
1883 | // Ranging over a nil *array may have >0 iterations. |
1884 | // We still generate code for x, in case it has effects. |
1885 | // |
1886 | // TypeParams do not have constant length. Use underlying instead of core type. |
1887 | length = intConst(arr.Len()) |
1888 | } else { |
1889 | // length = len(x). |
1890 | var c Call |
1891 | c.Call.Value = makeLen(x.Type()) |
1892 | c.Call.Args = []Value{x} |
1893 | c.setType(tInt) |
1894 | length = fn.emit(&c) |
1895 | } |
1896 | |
1897 | index := fn.addLocal(tInt, token.NoPos) |
1898 | emitStore(fn, index, intConst(-1), pos) |
1899 | |
1900 | loop = fn.newBasicBlock("rangeindex.loop") |
1901 | emitJump(fn, loop) |
1902 | fn.currentBlock = loop |
1903 | |
1904 | incr := &BinOp{ |
1905 | Op: token.ADD, |
1906 | X: emitLoad(fn, index), |
1907 | Y: vOne, |
1908 | } |
1909 | incr.setType(tInt) |
1910 | emitStore(fn, index, fn.emit(incr), pos) |
1911 | |
1912 | body := fn.newBasicBlock("rangeindex.body") |
1913 | done = fn.newBasicBlock("rangeindex.done") |
1914 | emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done) |
1915 | fn.currentBlock = body |
1916 | |
1917 | k = emitLoad(fn, index) |
1918 | if tv != nil { |
1919 | switch t := typeparams.CoreType(x.Type()).(type) { |
1920 | case *types.Array: |
1921 | instr := &Index{ |
1922 | X: x, |
1923 | Index: k, |
1924 | } |
1925 | instr.setType(t.Elem()) |
1926 | instr.setPos(x.Pos()) |
1927 | v = fn.emit(instr) |
1928 | |
1929 | case *types.Pointer: // *array |
1930 | instr := &IndexAddr{ |
1931 | X: x, |
1932 | Index: k, |
1933 | } |
1934 | instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem())) |
1935 | instr.setPos(x.Pos()) |
1936 | v = emitLoad(fn, fn.emit(instr)) |
1937 | |
1938 | case *types.Slice: |
1939 | instr := &IndexAddr{ |
1940 | X: x, |
1941 | Index: k, |
1942 | } |
1943 | instr.setType(types.NewPointer(t.Elem())) |
1944 | instr.setPos(x.Pos()) |
1945 | v = emitLoad(fn, fn.emit(instr)) |
1946 | |
1947 | default: |
1948 | panic("rangeIndexed x:" + t.String()) |
1949 | } |
1950 | } |
1951 | return |
1952 | } |
1953 | |
1954 | // rangeIter emits to fn the header for a loop using |
1955 | // Range/Next/Extract to iterate over map or string value x. |
1956 | // tk and tv are the types of the key/value results k and v, or nil |
1957 | // if the respective component is not wanted. |
1958 | func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) { |
1959 | // |
1960 | // it = range x |
1961 | // loop: (target of continue) |
1962 | // okv = next it (ok, key, value) |
1963 | // ok = extract okv #0 |
1964 | // if ok goto body else done |
1965 | // body: |
1966 | // k = extract okv #1 |
1967 | // v = extract okv #2 |
1968 | // ...body... |
1969 | // jump loop |
1970 | // done: (target of break) |
1971 | // |
1972 | |
1973 | if tk == nil { |
1974 | tk = tInvalid |
1975 | } |
1976 | if tv == nil { |
1977 | tv = tInvalid |
1978 | } |
1979 | |
1980 | rng := &Range{X: x} |
1981 | rng.setPos(pos) |
1982 | rng.setType(tRangeIter) |
1983 | it := fn.emit(rng) |
1984 | |
1985 | loop = fn.newBasicBlock("rangeiter.loop") |
1986 | emitJump(fn, loop) |
1987 | fn.currentBlock = loop |
1988 | |
1989 | okv := &Next{ |
1990 | Iter: it, |
1991 | IsString: isBasic(typeparams.CoreType(x.Type())), |
1992 | } |
1993 | okv.setType(types.NewTuple( |
1994 | varOk, |
1995 | newVar("k", tk), |
1996 | newVar("v", tv), |
1997 | )) |
1998 | fn.emit(okv) |
1999 | |
2000 | body := fn.newBasicBlock("rangeiter.body") |
2001 | done = fn.newBasicBlock("rangeiter.done") |
2002 | emitIf(fn, emitExtract(fn, okv, 0), body, done) |
2003 | fn.currentBlock = body |
2004 | |
2005 | if tk != tInvalid { |
2006 | k = emitExtract(fn, okv, 1) |
2007 | } |
2008 | if tv != tInvalid { |
2009 | v = emitExtract(fn, okv, 2) |
2010 | } |
2011 | return |
2012 | } |
2013 | |
2014 | // rangeChan emits to fn the header for a loop that receives from |
2015 | // channel x until it fails. |
2016 | // tk is the channel's element type, or nil if the k result is |
2017 | // not wanted |
2018 | // pos is the position of the '=' or ':=' token. |
2019 | func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) { |
2020 | // |
2021 | // loop: (target of continue) |
2022 | // ko = <-x (key, ok) |
2023 | // ok = extract ko #1 |
2024 | // if ok goto body else done |
2025 | // body: |
2026 | // k = extract ko #0 |
2027 | // ... |
2028 | // goto loop |
2029 | // done: (target of break) |
2030 | |
2031 | loop = fn.newBasicBlock("rangechan.loop") |
2032 | emitJump(fn, loop) |
2033 | fn.currentBlock = loop |
2034 | recv := &UnOp{ |
2035 | Op: token.ARROW, |
2036 | X: x, |
2037 | CommaOk: true, |
2038 | } |
2039 | recv.setPos(pos) |
2040 | recv.setType(types.NewTuple( |
2041 | newVar("k", typeparams.CoreType(x.Type()).(*types.Chan).Elem()), |
2042 | varOk, |
2043 | )) |
2044 | ko := fn.emit(recv) |
2045 | body := fn.newBasicBlock("rangechan.body") |
2046 | done = fn.newBasicBlock("rangechan.done") |
2047 | emitIf(fn, emitExtract(fn, ko, 1), body, done) |
2048 | fn.currentBlock = body |
2049 | if tk != nil { |
2050 | k = emitExtract(fn, ko, 0) |
2051 | } |
2052 | return |
2053 | } |
2054 | |
2055 | // rangeStmt emits to fn code for the range statement s, optionally |
2056 | // labelled by label. |
2057 | func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) { |
2058 | var tk, tv types.Type |
2059 | if s.Key != nil && !isBlankIdent(s.Key) { |
2060 | tk = fn.typeOf(s.Key) |
2061 | } |
2062 | if s.Value != nil && !isBlankIdent(s.Value) { |
2063 | tv = fn.typeOf(s.Value) |
2064 | } |
2065 | |
2066 | // If iteration variables are defined (:=), this |
2067 | // occurs once outside the loop. |
2068 | // |
2069 | // Unlike a short variable declaration, a RangeStmt |
2070 | // using := never redeclares an existing variable; it |
2071 | // always creates a new one. |
2072 | if s.Tok == token.DEFINE { |
2073 | if tk != nil { |
2074 | fn.addLocalForIdent(s.Key.(*ast.Ident)) |
2075 | } |
2076 | if tv != nil { |
2077 | fn.addLocalForIdent(s.Value.(*ast.Ident)) |
2078 | } |
2079 | } |
2080 | |
2081 | x := b.expr(fn, s.X) |
2082 | |
2083 | var k, v Value |
2084 | var loop, done *BasicBlock |
2085 | switch rt := typeparams.CoreType(x.Type()).(type) { |
2086 | case *types.Slice, *types.Array, *types.Pointer: // *array |
2087 | k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For) |
2088 | |
2089 | case *types.Chan: |
2090 | k, loop, done = b.rangeChan(fn, x, tk, s.For) |
2091 | |
2092 | case *types.Map, *types.Basic: // string |
2093 | k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For) |
2094 | |
2095 | default: |
2096 | panic("Cannot range over: " + rt.String()) |
2097 | } |
2098 | |
2099 | // Evaluate both LHS expressions before we update either. |
2100 | var kl, vl lvalue |
2101 | if tk != nil { |
2102 | kl = b.addr(fn, s.Key, false) // non-escaping |
2103 | } |
2104 | if tv != nil { |
2105 | vl = b.addr(fn, s.Value, false) // non-escaping |
2106 | } |
2107 | if tk != nil { |
2108 | kl.store(fn, k) |
2109 | } |
2110 | if tv != nil { |
2111 | vl.store(fn, v) |
2112 | } |
2113 | |
2114 | if label != nil { |
2115 | label._break = done |
2116 | label._continue = loop |
2117 | } |
2118 | |
2119 | fn.targets = &targets{ |
2120 | tail: fn.targets, |
2121 | _break: done, |
2122 | _continue: loop, |
2123 | } |
2124 | b.stmt(fn, s.Body) |
2125 | fn.targets = fn.targets.tail |
2126 | emitJump(fn, loop) // back-edge |
2127 | fn.currentBlock = done |
2128 | } |
2129 | |
2130 | // stmt lowers statement s to SSA form, emitting code to fn. |
2131 | func (b *builder) stmt(fn *Function, _s ast.Stmt) { |
2132 | // The label of the current statement. If non-nil, its _goto |
2133 | // target is always set; its _break and _continue are set only |
2134 | // within the body of switch/typeswitch/select/for/range. |
2135 | // It is effectively an additional default-nil parameter of stmt(). |
2136 | var label *lblock |
2137 | start: |
2138 | switch s := _s.(type) { |
2139 | case *ast.EmptyStmt: |
2140 | // ignore. (Usually removed by gofmt.) |
2141 | |
2142 | case *ast.DeclStmt: // Con, Var or Typ |
2143 | d := s.Decl.(*ast.GenDecl) |
2144 | if d.Tok == token.VAR { |
2145 | for _, spec := range d.Specs { |
2146 | if vs, ok := spec.(*ast.ValueSpec); ok { |
2147 | b.localValueSpec(fn, vs) |
2148 | } |
2149 | } |
2150 | } |
2151 | |
2152 | case *ast.LabeledStmt: |
2153 | label = fn.labelledBlock(s.Label) |
2154 | emitJump(fn, label._goto) |
2155 | fn.currentBlock = label._goto |
2156 | _s = s.Stmt |
2157 | goto start // effectively: tailcall stmt(fn, s.Stmt, label) |
2158 | |
2159 | case *ast.ExprStmt: |
2160 | b.expr(fn, s.X) |
2161 | |
2162 | case *ast.SendStmt: |
2163 | chtyp := typeparams.CoreType(fn.typeOf(s.Chan)).(*types.Chan) |
2164 | fn.emit(&Send{ |
2165 | Chan: b.expr(fn, s.Chan), |
2166 | X: emitConv(fn, b.expr(fn, s.Value), chtyp.Elem()), |
2167 | pos: s.Arrow, |
2168 | }) |
2169 | |
2170 | case *ast.IncDecStmt: |
2171 | op := token.ADD |
2172 | if s.Tok == token.DEC { |
2173 | op = token.SUB |
2174 | } |
2175 | loc := b.addr(fn, s.X, false) |
2176 | b.assignOp(fn, loc, NewConst(constant.MakeInt64(1), loc.typ()), op, s.Pos()) |
2177 | |
2178 | case *ast.AssignStmt: |
2179 | switch s.Tok { |
2180 | case token.ASSIGN, token.DEFINE: |
2181 | b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE) |
2182 | |
2183 | default: // +=, etc. |
2184 | op := s.Tok + token.ADD - token.ADD_ASSIGN |
2185 | b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op, s.Pos()) |
2186 | } |
2187 | |
2188 | case *ast.GoStmt: |
2189 | // The "intrinsics" new/make/len/cap are forbidden here. |
2190 | // panic is treated like an ordinary function call. |
2191 | v := Go{pos: s.Go} |
2192 | b.setCall(fn, s.Call, &v.Call) |
2193 | fn.emit(&v) |
2194 | |
2195 | case *ast.DeferStmt: |
2196 | // The "intrinsics" new/make/len/cap are forbidden here. |
2197 | // panic is treated like an ordinary function call. |
2198 | v := Defer{pos: s.Defer} |
2199 | b.setCall(fn, s.Call, &v.Call) |
2200 | fn.emit(&v) |
2201 | |
2202 | // A deferred call can cause recovery from panic, |
2203 | // and control resumes at the Recover block. |
2204 | createRecoverBlock(fn) |
2205 | |
2206 | case *ast.ReturnStmt: |
2207 | var results []Value |
2208 | if len(s.Results) == 1 && fn.Signature.Results().Len() > 1 { |
2209 | // Return of one expression in a multi-valued function. |
2210 | tuple := b.exprN(fn, s.Results[0]) |
2211 | ttuple := tuple.Type().(*types.Tuple) |
2212 | for i, n := 0, ttuple.Len(); i < n; i++ { |
2213 | results = append(results, |
2214 | emitConv(fn, emitExtract(fn, tuple, i), |
2215 | fn.Signature.Results().At(i).Type())) |
2216 | } |
2217 | } else { |
2218 | // 1:1 return, or no-arg return in non-void function. |
2219 | for i, r := range s.Results { |
2220 | v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type()) |
2221 | results = append(results, v) |
2222 | } |
2223 | } |
2224 | if fn.namedResults != nil { |
2225 | // Function has named result parameters (NRPs). |
2226 | // Perform parallel assignment of return operands to NRPs. |
2227 | for i, r := range results { |
2228 | emitStore(fn, fn.namedResults[i], r, s.Return) |
2229 | } |
2230 | } |
2231 | // Run function calls deferred in this |
2232 | // function when explicitly returning from it. |
2233 | fn.emit(new(RunDefers)) |
2234 | if fn.namedResults != nil { |
2235 | // Reload NRPs to form the result tuple. |
2236 | results = results[:0] |
2237 | for _, r := range fn.namedResults { |
2238 | results = append(results, emitLoad(fn, r)) |
2239 | } |
2240 | } |
2241 | fn.emit(&Return{Results: results, pos: s.Return}) |
2242 | fn.currentBlock = fn.newBasicBlock("unreachable") |
2243 | |
2244 | case *ast.BranchStmt: |
2245 | var block *BasicBlock |
2246 | switch s.Tok { |
2247 | case token.BREAK: |
2248 | if s.Label != nil { |
2249 | block = fn.labelledBlock(s.Label)._break |
2250 | } else { |
2251 | for t := fn.targets; t != nil && block == nil; t = t.tail { |
2252 | block = t._break |
2253 | } |
2254 | } |
2255 | |
2256 | case token.CONTINUE: |
2257 | if s.Label != nil { |
2258 | block = fn.labelledBlock(s.Label)._continue |
2259 | } else { |
2260 | for t := fn.targets; t != nil && block == nil; t = t.tail { |
2261 | block = t._continue |
2262 | } |
2263 | } |
2264 | |
2265 | case token.FALLTHROUGH: |
2266 | for t := fn.targets; t != nil && block == nil; t = t.tail { |
2267 | block = t._fallthrough |
2268 | } |
2269 | |
2270 | case token.GOTO: |
2271 | block = fn.labelledBlock(s.Label)._goto |
2272 | } |
2273 | emitJump(fn, block) |
2274 | fn.currentBlock = fn.newBasicBlock("unreachable") |
2275 | |
2276 | case *ast.BlockStmt: |
2277 | b.stmtList(fn, s.List) |
2278 | |
2279 | case *ast.IfStmt: |
2280 | if s.Init != nil { |
2281 | b.stmt(fn, s.Init) |
2282 | } |
2283 | then := fn.newBasicBlock("if.then") |
2284 | done := fn.newBasicBlock("if.done") |
2285 | els := done |
2286 | if s.Else != nil { |
2287 | els = fn.newBasicBlock("if.else") |
2288 | } |
2289 | b.cond(fn, s.Cond, then, els) |
2290 | fn.currentBlock = then |
2291 | b.stmt(fn, s.Body) |
2292 | emitJump(fn, done) |
2293 | |
2294 | if s.Else != nil { |
2295 | fn.currentBlock = els |
2296 | b.stmt(fn, s.Else) |
2297 | emitJump(fn, done) |
2298 | } |
2299 | |
2300 | fn.currentBlock = done |
2301 | |
2302 | case *ast.SwitchStmt: |
2303 | b.switchStmt(fn, s, label) |
2304 | |
2305 | case *ast.TypeSwitchStmt: |
2306 | b.typeSwitchStmt(fn, s, label) |
2307 | |
2308 | case *ast.SelectStmt: |
2309 | b.selectStmt(fn, s, label) |
2310 | |
2311 | case *ast.ForStmt: |
2312 | b.forStmt(fn, s, label) |
2313 | |
2314 | case *ast.RangeStmt: |
2315 | b.rangeStmt(fn, s, label) |
2316 | |
2317 | default: |
2318 | panic(fmt.Sprintf("unexpected statement kind: %T", s)) |
2319 | } |
2320 | } |
2321 | |
2322 | // buildFunction builds SSA code for the body of function fn. Idempotent. |
2323 | func (b *builder) buildFunction(fn *Function) { |
2324 | if !fn.built { |
2325 | assert(fn.parent == nil, "anonymous functions should not be built by buildFunction()") |
2326 | b.buildFunctionBody(fn) |
2327 | fn.done() |
2328 | } |
2329 | } |
2330 | |
2331 | // buildFunctionBody builds SSA code for the body of function fn. |
2332 | // |
2333 | // fn is not done building until fn.done() is called. |
2334 | func (b *builder) buildFunctionBody(fn *Function) { |
2335 | // TODO(taking): see if this check is reachable. |
2336 | if fn.Blocks != nil { |
2337 | return // building already started |
2338 | } |
2339 | |
2340 | var recvField *ast.FieldList |
2341 | var body *ast.BlockStmt |
2342 | var functype *ast.FuncType |
2343 | switch n := fn.syntax.(type) { |
2344 | case nil: |
2345 | if fn.Params != nil { |
2346 | return // not a Go source function. (Synthetic, or from object file.) |
2347 | } |
2348 | case *ast.FuncDecl: |
2349 | functype = n.Type |
2350 | recvField = n.Recv |
2351 | body = n.Body |
2352 | case *ast.FuncLit: |
2353 | functype = n.Type |
2354 | body = n.Body |
2355 | default: |
2356 | panic(n) |
2357 | } |
2358 | |
2359 | if body == nil { |
2360 | // External function. |
2361 | if fn.Params == nil { |
2362 | // This condition ensures we add a non-empty |
2363 | // params list once only, but we may attempt |
2364 | // the degenerate empty case repeatedly. |
2365 | // TODO(adonovan): opt: don't do that. |
2366 | |
2367 | // We set Function.Params even though there is no body |
2368 | // code to reference them. This simplifies clients. |
2369 | if recv := fn.Signature.Recv(); recv != nil { |
2370 | fn.addParamObj(recv) |
2371 | } |
2372 | params := fn.Signature.Params() |
2373 | for i, n := 0, params.Len(); i < n; i++ { |
2374 | fn.addParamObj(params.At(i)) |
2375 | } |
2376 | } |
2377 | return |
2378 | } |
2379 | |
2380 | // Build instantiation wrapper around generic body? |
2381 | if fn.topLevelOrigin != nil && fn.subst == nil { |
2382 | buildInstantiationWrapper(fn) |
2383 | return |
2384 | } |
2385 | |
2386 | if fn.Prog.mode&LogSource != 0 { |
2387 | defer logStack("build function %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))() |
2388 | } |
2389 | fn.startBody() |
2390 | fn.createSyntacticParams(recvField, functype) |
2391 | b.stmt(fn, body) |
2392 | if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) { |
2393 | // Control fell off the end of the function's body block. |
2394 | // |
2395 | // Block optimizations eliminate the current block, if |
2396 | // unreachable. It is a builder invariant that |
2397 | // if this no-arg return is ill-typed for |
2398 | // fn.Signature.Results, this block must be |
2399 | // unreachable. The sanity checker checks this. |
2400 | fn.emit(new(RunDefers)) |
2401 | fn.emit(new(Return)) |
2402 | } |
2403 | fn.finishBody() |
2404 | } |
2405 | |
2406 | // buildCreated does the BUILD phase for each function created by builder that is not yet BUILT. |
2407 | // Functions are built using buildFunction. |
2408 | // |
2409 | // May add types that require runtime type information to builder. |
2410 | func (b *builder) buildCreated() { |
2411 | for ; b.finished < b.created.Len(); b.finished++ { |
2412 | fn := b.created.At(b.finished) |
2413 | b.buildFunction(fn) |
2414 | } |
2415 | } |
2416 | |
2417 | // Adds any needed runtime type information for the created functions. |
2418 | // |
2419 | // May add newly CREATEd functions that may need to be built or runtime type information. |
2420 | // |
2421 | // EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu) |
2422 | func (b *builder) needsRuntimeTypes() { |
2423 | if b.created.Len() == 0 { |
2424 | return |
2425 | } |
2426 | prog := b.created.At(0).Prog |
2427 | |
2428 | var rtypes []types.Type |
2429 | for ; b.rtypes < b.finished; b.rtypes++ { |
2430 | fn := b.created.At(b.rtypes) |
2431 | rtypes = append(rtypes, mayNeedRuntimeTypes(fn)...) |
2432 | } |
2433 | |
2434 | // Calling prog.needMethodsOf(T) on a basic type T is a no-op. |
2435 | // Filter out the basic types to reduce acquiring prog.methodsMu. |
2436 | rtypes = nonbasicTypes(rtypes) |
2437 | |
2438 | for _, T := range rtypes { |
2439 | prog.needMethodsOf(T, b.created) |
2440 | } |
2441 | } |
2442 | |
2443 | func (b *builder) done() bool { |
2444 | return b.rtypes >= b.created.Len() |
2445 | } |
2446 | |
2447 | // Build calls Package.Build for each package in prog. |
2448 | // Building occurs in parallel unless the BuildSerially mode flag was set. |
2449 | // |
2450 | // Build is intended for whole-program analysis; a typical compiler |
2451 | // need only build a single package. |
2452 | // |
2453 | // Build is idempotent and thread-safe. |
2454 | func (prog *Program) Build() { |
2455 | var wg sync.WaitGroup |
2456 | for _, p := range prog.packages { |
2457 | if prog.mode&BuildSerially != 0 { |
2458 | p.Build() |
2459 | } else { |
2460 | wg.Add(1) |
2461 | go func(p *Package) { |
2462 | p.Build() |
2463 | wg.Done() |
2464 | }(p) |
2465 | } |
2466 | } |
2467 | wg.Wait() |
2468 | } |
2469 | |
2470 | // Build builds SSA code for all functions and vars in package p. |
2471 | // |
2472 | // Precondition: CreatePackage must have been called for all of p's |
2473 | // direct imports (and hence its direct imports must have been |
2474 | // error-free). |
2475 | // |
2476 | // Build is idempotent and thread-safe. |
2477 | func (p *Package) Build() { p.buildOnce.Do(p.build) } |
2478 | |
2479 | func (p *Package) build() { |
2480 | if p.info == nil { |
2481 | return // synthetic package, e.g. "testmain" |
2482 | } |
2483 | |
2484 | // Ensure we have runtime type info for all exported members. |
2485 | // Additionally filter for just concrete types that can be runtime types. |
2486 | // |
2487 | // TODO(adonovan): ideally belongs in memberFromObject, but |
2488 | // that would require package creation in topological order. |
2489 | for name, mem := range p.Members { |
2490 | isGround := func(m Member) bool { |
2491 | switch m := m.(type) { |
2492 | case *Type: |
2493 | named, _ := m.Type().(*types.Named) |
2494 | return named == nil || typeparams.ForNamed(named) == nil |
2495 | case *Function: |
2496 | return m.typeparams.Len() == 0 |
2497 | } |
2498 | return true // *NamedConst, *Global |
2499 | } |
2500 | if ast.IsExported(name) && isGround(mem) { |
2501 | p.Prog.needMethodsOf(mem.Type(), &p.created) |
2502 | } |
2503 | } |
2504 | if p.Prog.mode&LogSource != 0 { |
2505 | defer logStack("build %s", p)() |
2506 | } |
2507 | |
2508 | b := builder{created: &p.created} |
2509 | init := p.init |
2510 | init.startBody() |
2511 | |
2512 | var done *BasicBlock |
2513 | |
2514 | if p.Prog.mode&BareInits == 0 { |
2515 | // Make init() skip if package is already initialized. |
2516 | initguard := p.Var("init$guard") |
2517 | doinit := init.newBasicBlock("init.start") |
2518 | done = init.newBasicBlock("init.done") |
2519 | emitIf(init, emitLoad(init, initguard), done, doinit) |
2520 | init.currentBlock = doinit |
2521 | emitStore(init, initguard, vTrue, token.NoPos) |
2522 | |
2523 | // Call the init() function of each package we import. |
2524 | for _, pkg := range p.Pkg.Imports() { |
2525 | prereq := p.Prog.packages[pkg] |
2526 | if prereq == nil { |
2527 | panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path())) |
2528 | } |
2529 | var v Call |
2530 | v.Call.Value = prereq.init |
2531 | v.Call.pos = init.pos |
2532 | v.setType(types.NewTuple()) |
2533 | init.emit(&v) |
2534 | } |
2535 | } |
2536 | |
2537 | // Initialize package-level vars in correct order. |
2538 | if len(p.info.InitOrder) > 0 && len(p.files) == 0 { |
2539 | panic("no source files provided for package. cannot initialize globals") |
2540 | } |
2541 | for _, varinit := range p.info.InitOrder { |
2542 | if init.Prog.mode&LogSource != 0 { |
2543 | fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n", |
2544 | varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos())) |
2545 | } |
2546 | if len(varinit.Lhs) == 1 { |
2547 | // 1:1 initialization: var x, y = a(), b() |
2548 | var lval lvalue |
2549 | if v := varinit.Lhs[0]; v.Name() != "_" { |
2550 | lval = &address{addr: p.objects[v].(*Global), pos: v.Pos()} |
2551 | } else { |
2552 | lval = blank{} |
2553 | } |
2554 | b.assign(init, lval, varinit.Rhs, true, nil) |
2555 | } else { |
2556 | // n:1 initialization: var x, y := f() |
2557 | tuple := b.exprN(init, varinit.Rhs) |
2558 | for i, v := range varinit.Lhs { |
2559 | if v.Name() == "_" { |
2560 | continue |
2561 | } |
2562 | emitStore(init, p.objects[v].(*Global), emitExtract(init, tuple, i), v.Pos()) |
2563 | } |
2564 | } |
2565 | } |
2566 | |
2567 | // Call all of the declared init() functions in source order. |
2568 | for _, file := range p.files { |
2569 | for _, decl := range file.Decls { |
2570 | if decl, ok := decl.(*ast.FuncDecl); ok { |
2571 | id := decl.Name |
2572 | if !isBlankIdent(id) && id.Name == "init" && decl.Recv == nil { |
2573 | fn := p.objects[p.info.Defs[id]].(*Function) |
2574 | var v Call |
2575 | v.Call.Value = fn |
2576 | v.setType(types.NewTuple()) |
2577 | p.init.emit(&v) |
2578 | } |
2579 | } |
2580 | } |
2581 | } |
2582 | |
2583 | // Finish up init(). |
2584 | if p.Prog.mode&BareInits == 0 { |
2585 | emitJump(init, done) |
2586 | init.currentBlock = done |
2587 | } |
2588 | init.emit(new(Return)) |
2589 | init.finishBody() |
2590 | init.done() |
2591 | |
2592 | // Build all CREATEd functions and add runtime types. |
2593 | // These Functions include package-level functions, init functions, methods, and synthetic (including unreachable/blank ones). |
2594 | // Builds any functions CREATEd while building this package. |
2595 | // |
2596 | // Initially the created functions for the package are: |
2597 | // [init, decl0, ... , declN] |
2598 | // Where decl0, ..., declN are declared functions in source order, but it's not significant. |
2599 | // |
2600 | // As these are built, more functions (function literals, wrappers, etc.) can be CREATEd. |
2601 | // Iterate until we reach a fixed point. |
2602 | // |
2603 | // Wait for init() to be BUILT as that cannot be built by buildFunction(). |
2604 | // |
2605 | for !b.done() { |
2606 | b.buildCreated() // build any CREATEd and not BUILT function. May add runtime types. |
2607 | b.needsRuntimeTypes() // Add all of the runtime type information. May CREATE Functions. |
2608 | } |
2609 | |
2610 | p.info = nil // We no longer need ASTs or go/types deductions. |
2611 | p.created = nil // We no longer need created functions. |
2612 | |
2613 | if p.Prog.mode&SanityCheckFunctions != 0 { |
2614 | sanityCheckPackage(p) |
2615 | } |
2616 | } |
2617 |
Members