Clang Project

clang_source_code/lib/CodeGen/CGExprCXX.cpp
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "ConstantEmitter.h"
19#include "clang/Basic/CodeGenOptions.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "llvm/IR/Intrinsics.h"
22
23using namespace clang;
24using namespace CodeGen;
25
26namespace {
27struct MemberCallInfo {
28  RequiredArgs ReqArgs;
29  // Number of prefix arguments for the call. Ignores the `this` pointer.
30  unsigned PrefixSize;
31};
32}
33
34static MemberCallInfo
35commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGFconst CXXMethodDecl *MD,
36                                  llvm::Value *Thisllvm::Value *ImplicitParam,
37                                  QualType ImplicitParamTyconst CallExpr *CE,
38                                  CallArgList &ArgsCallArgList *RtlArgs) {
39  (CE) || isa(CE)", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 40, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40(CE) || isa(CE)", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 40, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         isa<CXXOperatorCallExpr>(CE));
41   (0) . __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 42, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(MD->isInstance() &&
42 (0) . __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 42, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Trying to emit a member or operator call expr on a static method!");
43
44  // Push the this ptr.
45  const CXXRecordDecl *RD =
46      CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
47  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48
49  // If there is an implicit parameter (e.g. VTT), emit it.
50  if (ImplicitParam) {
51    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52  }
53
54  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55  RequiredArgs required = RequiredArgs::forPrototypePlus(FPTArgs.size());
56  unsigned PrefixSize = Args.size() - 1;
57
58  // And the rest of the call args.
59  if (RtlArgs) {
60    // Special case: if the caller emitted the arguments right-to-left already
61    // (prior to emitting the *this argument), we're done. This happens for
62    // assignment operators.
63    Args.addFrom(*RtlArgs);
64  } else if (CE) {
65    // Special case: skip first argument of CXXOperatorCall (it is "this").
66    unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67    CGF.EmitCallArgs(ArgsFPT, drop_begin(CE->arguments(), ArgsToSkip),
68                     CE->getDirectCallee());
69  } else {
70     (0) . __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 72, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(
71 (0) . __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 72, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">        FPT->getNumParams() == 0 &&
72 (0) . __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 72, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">        "No CallExpr specified for function with non-zero number of arguments");
73  }
74  return {requiredPrefixSize};
75}
76
77RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78    const CXXMethodDecl *MDconst CGCallee &Callee,
79    ReturnValueSlot ReturnValue,
80    llvm::Value *Thisllvm::Value *ImplicitParamQualType ImplicitParamTy,
81    const CallExpr *CECallArgList *RtlArgs) {
82  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83  CallArgList Args;
84  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85      *thisMDThisImplicitParamImplicitParamTyCEArgsRtlArgs);
86  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87      ArgsFPTCallInfo.ReqArgsCallInfo.PrefixSize);
88  return EmitCall(FnInfoCalleeReturnValueArgsnullptr,
89                  CE ? CE->getExprLoc() : SourceLocation());
90}
91
92RValue CodeGenFunction::EmitCXXDestructorCall(
93    GlobalDecl Dtorconst CGCallee &Calleellvm::Value *This,
94    llvm::Value *ImplicitParamQualType ImplicitParamTyconst CallExpr *CE) {
95  CallArgList Args;
96  commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()),
97                                    ThisImplicitParamImplicitParamTyCE,
98                                    Argsnullptr);
99  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
100                  ReturnValueSlot(), Args);
101}
102
103RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
104                                            const CXXPseudoDestructorExpr *E) {
105  QualType DestroyedType = E->getDestroyedType();
106  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107    // Automatic Reference Counting:
108    //   If the pseudo-expression names a retainable object with weak or
109    //   strong lifetime, the object shall be released.
110    Expr *BaseExpr = E->getBase();
111    Address BaseValue = Address::invalid();
112    Qualifiers BaseQuals;
113
114    // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115    if (E->isArrow()) {
116      BaseValue = EmitPointerWithAlignment(BaseExpr);
117      const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118      BaseQuals = PTy->getPointeeType().getQualifiers();
119    } else {
120      LValue BaseLV = EmitLValue(BaseExpr);
121      BaseValue = BaseLV.getAddress();
122      QualType BaseTy = BaseExpr->getType();
123      BaseQuals = BaseTy.getQualifiers();
124    }
125
126    switch (DestroyedType.getObjCLifetime()) {
127    case Qualifiers::OCL_None:
128    case Qualifiers::OCL_ExplicitNone:
129    case Qualifiers::OCL_Autoreleasing:
130      break;
131
132    case Qualifiers::OCL_Strong:
133      EmitARCRelease(Builder.CreateLoad(BaseValue,
134                        DestroyedType.isVolatileQualified()),
135                     ARCPreciseLifetime);
136      break;
137
138    case Qualifiers::OCL_Weak:
139      EmitARCDestroyWeak(BaseValue);
140      break;
141    }
142  } else {
143    // C++ [expr.pseudo]p1:
144    //   The result shall only be used as the operand for the function call
145    //   operator (), and the result of such a call has type void. The only
146    //   effect is the evaluation of the postfix-expression before the dot or
147    //   arrow.
148    EmitIgnoredExpr(E->getBase());
149  }
150
151  return RValue::get(nullptr);
152}
153
154static CXXRecordDecl *getCXXRecord(const Expr *E) {
155  QualType T = E->getType();
156  if (const PointerType *PTy = T->getAs<PointerType>())
157    T = PTy->getPointeeType();
158  const RecordType *Ty = T->castAs<RecordType>();
159  return cast<CXXRecordDecl>(Ty->getDecl());
160}
161
162// Note: This function also emit constructor calls to support a MSVC
163// extensions allowing explicit constructor function call.
164RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
165                                              ReturnValueSlot ReturnValue) {
166  const Expr *callee = CE->getCallee()->IgnoreParens();
167
168  if (isa<BinaryOperator>(callee))
169    return EmitCXXMemberPointerCallExpr(CEReturnValue);
170
171  const MemberExpr *ME = cast<MemberExpr>(callee);
172  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173
174  if (MD->isStatic()) {
175    // The method is static, emit it as we would a regular call.
176    CGCallee callee =
177        CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178    return EmitCall(getContext().getPointerType(MD->getType()), calleeCE,
179                    ReturnValue);
180  }
181
182  bool HasQualifier = ME->hasQualifier();
183  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184  bool IsArrow = ME->isArrow();
185  const Expr *Base = ME->getBase();
186
187  return EmitCXXMemberOrOperatorMemberCallExpr(
188      CEMDReturnValueHasQualifierQualifierIsArrowBase);
189}
190
191RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
192    const CallExpr *CEconst CXXMethodDecl *MDReturnValueSlot ReturnValue,
193    bool HasQualifierNestedNameSpecifier *Qualifierbool IsArrow,
194    const Expr *Base) {
195  (CE) || isa(CE)", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 195, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196
197  // Compute the object pointer.
198  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199
200  const CXXMethodDecl *DevirtualizedMethod = nullptr;
201  if (CanUseVirtualCall &&
202      MD->getDevirtualizedMethod(BasegetLangOpts().AppleKext)) {
203    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205    assert(DevirtualizedMethod);
206    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207    const Expr *Inner = Base->ignoreParenBaseCasts();
208    if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209        MD->getReturnType().getCanonicalType())
210      // If the return types are not the same, this might be a case where more
211      // code needs to run to compensate for it. For example, the derived
212      // method might return a type that inherits form from the return
213      // type of MD and has a prefix.
214      // For now we just avoid devirtualizing these covariant cases.
215      DevirtualizedMethod = nullptr;
216    else if (getCXXRecord(Inner) == DevirtualizedClass)
217      // If the class of the Inner expression is where the dynamic method
218      // is defined, build the this pointer from it.
219      Base = Inner;
220    else if (getCXXRecord(Base) != DevirtualizedClass) {
221      // If the method is defined in a class that is not the best dynamic
222      // one or the one of the full expression, we would have to build
223      // a derived-to-base cast to compute the correct this pointer, but
224      // we don't have support for that yet, so do a virtual call.
225      DevirtualizedMethod = nullptr;
226    }
227  }
228
229  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230  // operator before the LHS.
231  CallArgList RtlArgStorage;
232  CallArgList *RtlArgs = nullptr;
233  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234    if (OCE->isAssignmentOp()) {
235      RtlArgs = &RtlArgStorage;
236      EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237                   drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238                   /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239    }
240  }
241
242  LValue This;
243  if (IsArrow) {
244    LValueBaseInfo BaseInfo;
245    TBAAAccessInfo TBAAInfo;
246    Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247    This = MakeAddrLValue(ThisValueBase->getType(), BaseInfoTBAAInfo);
248  } else {
249    This = EmitLValue(Base);
250  }
251
252  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253    // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254    // constructing a new complete object of type Ctor.
255    assert(!RtlArgs);
256     (0) . __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 256, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257    CallArgList Args;
258    commonEmitCXXMemberOrOperatorCall(
259        *thisCtorThis.getPointer(), /*ImplicitParam=*/nullptr,
260        /*ImplicitParamTy=*/QualType(), CEArgsnullptr);
261
262    EmitCXXConstructorCall(CtorCtor_Complete/*ForVirtualBase=*/false,
263                           /*Delegating=*/falseThis.getAddress(), Args,
264                           AggValueSlot::DoesNotOverlapCE->getExprLoc(),
265                           /*NewPointerIsChecked=*/false);
266    return RValue::get(nullptr);
267  }
268
269  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270    if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271    if (!MD->getParent()->mayInsertExtraPadding()) {
272      if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
273        // We don't like to generate the trivial copy/move assignment operator
274        // when it isn't necessary; just produce the proper effect here.
275        LValue RHS = isa<CXXOperatorCallExpr>(CE)
276                         ? MakeNaturalAlignAddrLValue(
277                               (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278                               (*(CE->arg_begin() + 1))->getType())
279                         : EmitLValue(*CE->arg_begin());
280        EmitAggregateAssign(ThisRHSCE->getType());
281        return RValue::get(This.getPointer());
282      }
283      llvm_unreachable("unknown trivial member function");
284    }
285  }
286
287  // Compute the function type we're calling.
288  const CXXMethodDecl *CalleeDecl =
289      DevirtualizedMethod ? DevirtualizedMethod : MD;
290  const CGFunctionInfo *FInfo = nullptr;
291  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293        GlobalDecl(Dtor, Dtor_Complete));
294  else
295    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296
297  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298
299  // C++11 [class.mfct.non-static]p2:
300  //   If a non-static member function of a class X is called for an object that
301  //   is not of type X, or of a type derived from X, the behavior is undefined.
302  SourceLocation CallLoc;
303  ASTContext &C = getContext();
304  if (CE)
305    CallLoc = CE->getExprLoc();
306
307  SanitizerSet SkippedChecks;
308  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309    auto *IOA = CMCE->getImplicitObjectArgument();
310    bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311    if (IsImplicitObjectCXXThis)
312      SkippedChecks.set(SanitizerKind::Alignmenttrue);
313    if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314      SkippedChecks.set(SanitizerKind::Nulltrue);
315  }
316  EmitTypeCheck(CodeGenFunction::TCK_MemberCallCallLocThis.getPointer(),
317                C.getRecordType(CalleeDecl->getParent()),
318                /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319
320  // C++ [class.virtual]p12:
321  //   Explicit qualification with the scope operator (5.1) suppresses the
322  //   virtual call mechanism.
323  //
324  // We also don't emit a virtual call if the base expression has a record type
325  // because then we know what the type is.
326  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327
328  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329     (0) . __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 330, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(CE->arg_begin() == CE->arg_end() &&
330 (0) . __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 330, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">           "Destructor shouldn't have explicit parameters");
331     (0) . __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 331, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332    if (UseVirtualCall) {
333      CGM.getCXXABI().EmitVirtualDestructorCall(
334          *thisDtorDtor_CompleteThis.getAddress(),
335          cast<CXXMemberCallExpr>(CE));
336    } else {
337      GlobalDecl GD(DtorDtor_Complete);
338      CGCallee Callee;
339      if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
340        Callee = BuildAppleKextVirtualCall(DtorQualifierTy);
341      else if (!DevirtualizedMethod)
342        Callee =
343            CGCallee::forDirect(CGM.getAddrOfCXXStructor(GDFInfoTy), GD);
344      else {
345        Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GDTy), GD);
346      }
347
348      EmitCXXDestructorCall(GDCalleeThis.getPointer(),
349                            /*ImplicitParam=*/nullptr,
350                            /*ImplicitParamTy=*/QualType(), nullptr);
351    }
352    return RValue::get(nullptr);
353  }
354
355  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
356  // 'CalleeDecl' instead.
357
358  CGCallee Callee;
359  if (UseVirtualCall) {
360    Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
361  } else {
362    if (SanOpts.has(SanitizerKind::CFINVCall) &&
363        MD->getParent()->isDynamicClass()) {
364      llvm::Value *VTable;
365      const CXXRecordDecl *RD;
366      std::tie(VTableRD) =
367          CGM.getCXXABI().LoadVTablePtr(*thisThis.getAddress(),
368                                        MD->getParent());
369      EmitVTablePtrCheckForCall(RDVTableCFITCK_NVCallCE->getBeginLoc());
370    }
371
372    if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
373      Callee = BuildAppleKextVirtualCall(MDQualifierTy);
374    else if (!DevirtualizedMethod)
375      Callee =
376          CGCallee::forDirect(CGM.GetAddrOfFunction(MDTy), GlobalDecl(MD));
377    else {
378      Callee =
379          CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethodTy),
380                              GlobalDecl(DevirtualizedMethod));
381    }
382  }
383
384  if (MD->isVirtual()) {
385    Address NewThisAddr =
386        CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
387            *thisCalleeDeclThis.getAddress(), UseVirtualCall);
388    This.setAddress(NewThisAddr);
389  }
390
391  return EmitCXXMemberOrOperatorCall(
392      CalleeDeclCalleeReturnValueThis.getPointer(),
393      /*ImplicitParam=*/nullptrQualType(), CERtlArgs);
394}
395
396RValue
397CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
398                                              ReturnValueSlot ReturnValue) {
399  const BinaryOperator *BO =
400      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
401  const Expr *BaseExpr = BO->getLHS();
402  const Expr *MemFnExpr = BO->getRHS();
403
404  const MemberPointerType *MPT =
405    MemFnExpr->getType()->castAs<MemberPointerType>();
406
407  const FunctionProtoType *FPT =
408    MPT->getPointeeType()->castAs<FunctionProtoType>();
409  const CXXRecordDecl *RD =
410    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
411
412  // Emit the 'this' pointer.
413  Address This = Address::invalid();
414  if (BO->getOpcode() == BO_PtrMemI)
415    This = EmitPointerWithAlignment(BaseExpr);
416  else
417    This = EmitLValue(BaseExpr).getAddress();
418
419  EmitTypeCheck(TCK_MemberCallE->getExprLoc(), This.getPointer(),
420                QualType(MPT->getClass(), 0));
421
422  // Get the member function pointer.
423  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
424
425  // Ask the ABI to load the callee.  Note that This is modified.
426  llvm::Value *ThisPtrForCall = nullptr;
427  CGCallee Callee =
428    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*thisBOThis,
429                                             ThisPtrForCallMemFnPtrMPT);
430
431  CallArgList Args;
432
433  QualType ThisType =
434    getContext().getPointerType(getContext().getTagDeclType(RD));
435
436  // Push the this ptr.
437  Args.add(RValue::get(ThisPtrForCall), ThisType);
438
439  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT1);
440
441  // And the rest of the call args
442  EmitCallArgs(Args, FPT, E->arguments());
443  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(ArgsFPTrequired,
444                                                      /*PrefixSize=*/0),
445                  CalleeReturnValueArgsnullptrE->getExprLoc());
446}
447
448RValue
449CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
450                                               const CXXMethodDecl *MD,
451                                               ReturnValueSlot ReturnValue) {
452   (0) . __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 453, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(MD->isInstance() &&
453 (0) . __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 453, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Trying to emit a member call expr on a static method!");
454  return EmitCXXMemberOrOperatorMemberCallExpr(
455      EMDReturnValue/*HasQualifier=*/false/*Qualifier=*/nullptr,
456      /*IsArrow=*/falseE->getArg(0));
457}
458
459RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
460                                               ReturnValueSlot ReturnValue) {
461  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*thisEReturnValue);
462}
463
464static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
465                                            Address DestPtr,
466                                            const CXXRecordDecl *Base) {
467  if (Base->isEmpty())
468    return;
469
470  DestPtr = CGF.Builder.CreateElementBitCast(DestPtrCGF.Int8Ty);
471
472  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
473  CharUnits NVSize = Layout.getNonVirtualSize();
474
475  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
476  // present, they are initialized by the most derived class before calling the
477  // constructor.
478  SmallVector<std::pair<CharUnitsCharUnits>, 1Stores;
479  Stores.emplace_back(CharUnits::Zero(), NVSize);
480
481  // Each store is split by the existence of a vbptr.
482  CharUnits VBPtrWidth = CGF.getPointerSize();
483  std::vector<CharUnitsVBPtrOffsets =
484      CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
485  for (CharUnits VBPtrOffset : VBPtrOffsets) {
486    // Stop before we hit any virtual base pointers located in virtual bases.
487    if (VBPtrOffset >= NVSize)
488      break;
489    std::pair<CharUnitsCharUnitsLastStore = Stores.pop_back_val();
490    CharUnits LastStoreOffset = LastStore.first;
491    CharUnits LastStoreSize = LastStore.second;
492
493    CharUnits SplitBeforeOffset = LastStoreOffset;
494    CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
495     (0) . __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 495, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!SplitBeforeSize.isNegative() && "negative store size!");
496    if (!SplitBeforeSize.isZero())
497      Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
498
499    CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
500    CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
501     (0) . __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 501, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!SplitAfterSize.isNegative() && "negative store size!");
502    if (!SplitAfterSize.isZero())
503      Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
504  }
505
506  // If the type contains a pointer to data member we can't memset it to zero.
507  // Instead, create a null constant and copy it to the destination.
508  // TODO: there are other patterns besides zero that we can usefully memset,
509  // like -1, which happens to be the pattern used by member-pointers.
510  // TODO: isZeroInitializable can be over-conservative in the case where a
511  // virtual base contains a member pointer.
512  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
513  if (!NullConstantForBase->isNullValue()) {
514    llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
515        CGF.CGM.getModule(), NullConstantForBase->getType(),
516        /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
517        NullConstantForBase, Twine());
518
519    CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
520                               DestPtr.getAlignment());
521    NullVariable->setAlignment(Align.getQuantity());
522
523    Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
524
525    // Get and call the appropriate llvm.memcpy overload.
526    for (std::pair<CharUnits, CharUnits> Store : Stores) {
527      CharUnits StoreOffset = Store.first;
528      CharUnits StoreSize = Store.second;
529      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
530      CGF.Builder.CreateMemCpy(
531          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
532          CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
533          StoreSizeVal);
534    }
535
536  // Otherwise, just memset the whole thing to zero.  This is legal
537  // because in LLVM, all default initializers (other than the ones we just
538  // handled above) are guaranteed to have a bit pattern of all zeros.
539  } else {
540    for (std::pair<CharUnits, CharUnits> Store : Stores) {
541      CharUnits StoreOffset = Store.first;
542      CharUnits StoreSize = Store.second;
543      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544      CGF.Builder.CreateMemSet(
545          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546          CGF.Builder.getInt8(0), StoreSizeVal);
547    }
548  }
549}
550
551void
552CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
553                                      AggValueSlot Dest) {
554   (0) . __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 554, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!Dest.isIgnored() && "Must have a destination!");
555  const CXXConstructorDecl *CD = E->getConstructor();
556
557  // If we require zero initialization before (or instead of) calling the
558  // constructor, as can be the case with a non-user-provided default
559  // constructor, emit the zero initialization now, unless destination is
560  // already zeroed.
561  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
562    switch (E->getConstructionKind()) {
563    case CXXConstructExpr::CK_Delegating:
564    case CXXConstructExpr::CK_Complete:
565      EmitNullInitialization(Dest.getAddress(), E->getType());
566      break;
567    case CXXConstructExpr::CK_VirtualBase:
568    case CXXConstructExpr::CK_NonVirtualBase:
569      EmitNullBaseClassInitialization(*thisDest.getAddress(),
570                                      CD->getParent());
571      break;
572    }
573  }
574
575  // If this is a call to a trivial default constructor, do nothing.
576  if (CD->isTrivial() && CD->isDefaultConstructor())
577    return;
578
579  // Elide the constructor if we're constructing from a temporary.
580  // The temporary check is required because Sema sets this on NRVO
581  // returns.
582  if (getLangOpts().ElideConstructors && E->isElidable()) {
583    getType(), E->getArg(0)->getType())", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 584, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(getContext().hasSameUnqualifiedType(E->getType(),
584getType(), E->getArg(0)->getType())", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 584, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">                                               E->getArg(0)->getType()));
585    if (E->getArg(0)->isTemporaryObject(getContext()CD->getParent())) {
586      EmitAggExpr(E->getArg(0), Dest);
587      return;
588    }
589  }
590
591  if (const ArrayType *arrayType
592        = getContext().getAsArrayType(E->getType())) {
593    EmitCXXAggrConstructorCall(CDarrayTypeDest.getAddress(), E,
594                               Dest.isSanitizerChecked());
595  } else {
596    CXXCtorType Type = Ctor_Complete;
597    bool ForVirtualBase = false;
598    bool Delegating = false;
599
600    switch (E->getConstructionKind()) {
601     case CXXConstructExpr::CK_Delegating:
602      // We should be emitting a constructor; GlobalDecl will assert this
603      Type = CurGD.getCtorType();
604      Delegating = true;
605      break;
606
607     case CXXConstructExpr::CK_Complete:
608      Type = Ctor_Complete;
609      break;
610
611     case CXXConstructExpr::CK_VirtualBase:
612      ForVirtualBase = true;
613      LLVM_FALLTHROUGH;
614
615     case CXXConstructExpr::CK_NonVirtualBase:
616      Type = Ctor_Base;
617    }
618
619    // Call the constructor.
620    EmitCXXConstructorCall(CDTypeForVirtualBaseDelegating,
621                           Dest.getAddress(), EDest.mayOverlap(),
622                           Dest.isSanitizerChecked());
623  }
624}
625
626void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address DestAddress Src,
627                                                 const Expr *Exp) {
628  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
629    Exp = E->getSubExpr();
630   (0) . __assert_fail ("isa(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 631, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(isa<CXXConstructExpr>(Exp) &&
631 (0) . __assert_fail ("isa(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 631, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
632  const CXXConstructExprE = cast<CXXConstructExpr>(Exp);
633  const CXXConstructorDecl *CD = E->getConstructor();
634  RunCleanupsScope Scope(*this);
635
636  // If we require zero initialization before (or instead of) calling the
637  // constructor, as can be the case with a non-user-provided default
638  // constructor, emit the zero initialization now.
639  // FIXME. Do I still need this for a copy ctor synthesis?
640  if (E->requiresZeroInitialization())
641    EmitNullInitialization(DestE->getType());
642
643   (0) . __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 644, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!getContext().getAsConstantArrayType(E->getType())
644 (0) . __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 644, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
645  EmitSynthesizedCXXCopyCtorCall(CDDestSrcE);
646}
647
648static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
649                                        const CXXNewExpr *E) {
650  if (!E->isArray())
651    return CharUnits::Zero();
652
653  // No cookie is required if the operator new[] being used is the
654  // reserved placement operator new[].
655  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
656    return CharUnits::Zero();
657
658  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
659}
660
661static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
662                                        const CXXNewExpr *e,
663                                        unsigned minElements,
664                                        llvm::Value *&numElements,
665                                        llvm::Value *&sizeWithoutCookie) {
666  QualType type = e->getAllocatedType();
667
668  if (!e->isArray()) {
669    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
670    sizeWithoutCookie
671      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
672    return sizeWithoutCookie;
673  }
674
675  // The width of size_t.
676  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
677
678  // Figure out the cookie size.
679  llvm::APInt cookieSize(sizeWidth,
680                         CalculateCookiePadding(CGF, e).getQuantity());
681
682  // Emit the array size expression.
683  // We multiply the size of all dimensions for NumElements.
684  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
685  numElements =
686    ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
687  if (!numElements)
688    numElements = CGF.EmitScalarExpr(e->getArraySize());
689  (numElements->getType())", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 689, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(isa<llvm::IntegerType>(numElements->getType()));
690
691  // The number of elements can be have an arbitrary integer type;
692  // essentially, we need to multiply it by a constant factor, add a
693  // cookie size, and verify that the result is representable as a
694  // size_t.  That's just a gloss, though, and it's wrong in one
695  // important way: if the count is negative, it's an error even if
696  // the cookie size would bring the total size >= 0.
697  bool isSigned
698    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
699  llvm::IntegerType *numElementsType
700    = cast<llvm::IntegerType>(numElements->getType());
701  unsigned numElementsWidth = numElementsType->getBitWidth();
702
703  // Compute the constant factor.
704  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
705  while (const ConstantArrayType *CAT
706             = CGF.getContext().getAsConstantArrayType(type)) {
707    type = CAT->getElementType();
708    arraySizeMultiplier *= CAT->getSize();
709  }
710
711  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
712  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
713  typeSizeMultiplier *= arraySizeMultiplier;
714
715  // This will be a size_t.
716  llvm::Value *size;
717
718  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
719  // Don't bloat the -O0 code.
720  if (llvm::ConstantInt *numElementsC =
721        dyn_cast<llvm::ConstantInt>(numElements)) {
722    const llvm::APInt &count = numElementsC->getValue();
723
724    bool hasAnyOverflow = false;
725
726    // If 'count' was a negative number, it's an overflow.
727    if (isSigned && count.isNegative())
728      hasAnyOverflow = true;
729
730    // We want to do all this arithmetic in size_t.  If numElements is
731    // wider than that, check whether it's already too big, and if so,
732    // overflow.
733    else if (numElementsWidth > sizeWidth &&
734             numElementsWidth - sizeWidth > count.countLeadingZeros())
735      hasAnyOverflow = true;
736
737    // Okay, compute a count at the right width.
738    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
739
740    // If there is a brace-initializer, we cannot allocate fewer elements than
741    // there are initializers. If we do, that's treated like an overflow.
742    if (adjustedCount.ult(minElements))
743      hasAnyOverflow = true;
744
745    // Scale numElements by that.  This might overflow, but we don't
746    // care because it only overflows if allocationSize does, too, and
747    // if that overflows then we shouldn't use this.
748    numElements = llvm::ConstantInt::get(CGF.SizeTy,
749                                         adjustedCount * arraySizeMultiplier);
750
751    // Compute the size before cookie, and track whether it overflowed.
752    bool overflow;
753    llvm::APInt allocationSize
754      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
755    hasAnyOverflow |= overflow;
756
757    // Add in the cookie, and check whether it's overflowed.
758    if (cookieSize != 0) {
759      // Save the current size without a cookie.  This shouldn't be
760      // used if there was overflow.
761      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
762
763      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
764      hasAnyOverflow |= overflow;
765    }
766
767    // On overflow, produce a -1 so operator new will fail.
768    if (hasAnyOverflow) {
769      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
770    } else {
771      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
772    }
773
774  // Otherwise, we might need to use the overflow intrinsics.
775  } else {
776    // There are up to five conditions we need to test for:
777    // 1) if isSigned, we need to check whether numElements is negative;
778    // 2) if numElementsWidth > sizeWidth, we need to check whether
779    //   numElements is larger than something representable in size_t;
780    // 3) if minElements > 0, we need to check whether numElements is smaller
781    //    than that.
782    // 4) we need to compute
783    //      sizeWithoutCookie := numElements * typeSizeMultiplier
784    //    and check whether it overflows; and
785    // 5) if we need a cookie, we need to compute
786    //      size := sizeWithoutCookie + cookieSize
787    //    and check whether it overflows.
788
789    llvm::Value *hasOverflow = nullptr;
790
791    // If numElementsWidth > sizeWidth, then one way or another, we're
792    // going to have to do a comparison for (2), and this happens to
793    // take care of (1), too.
794    if (numElementsWidth > sizeWidth) {
795      llvm::APInt threshold(numElementsWidth, 1);
796      threshold <<= sizeWidth;
797
798      llvm::Value *thresholdV
799        = llvm::ConstantInt::get(numElementsType, threshold);
800
801      hasOverflow = CGF.Builder.CreateICmpUGE(numElementsthresholdV);
802      numElements = CGF.Builder.CreateTrunc(numElementsCGF.SizeTy);
803
804    // Otherwise, if we're signed, we want to sext up to size_t.
805    } else if (isSigned) {
806      if (numElementsWidth < sizeWidth)
807        numElements = CGF.Builder.CreateSExt(numElementsCGF.SizeTy);
808
809      // If there's a non-1 type size multiplier, then we can do the
810      // signedness check at the same time as we do the multiply
811      // because a negative number times anything will cause an
812      // unsigned overflow.  Otherwise, we have to do it here. But at least
813      // in this case, we can subsume the >= minElements check.
814      if (typeSizeMultiplier == 1)
815        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
816                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
817
818    // Otherwise, zext up to size_t if necessary.
819    } else if (numElementsWidth < sizeWidth) {
820      numElements = CGF.Builder.CreateZExt(numElementsCGF.SizeTy);
821    }
822
823    getType() == CGF.SizeTy", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 823, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(numElements->getType() == CGF.SizeTy);
824
825    if (minElements) {
826      // Don't allow allocation of fewer elements than we have initializers.
827      if (!hasOverflow) {
828        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
829                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
830      } else if (numElementsWidth > sizeWidth) {
831        // The other existing overflow subsumes this check.
832        // We do an unsigned comparison, since any signed value < -1 is
833        // taken care of either above or below.
834        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
835                          CGF.Builder.CreateICmpULT(numElements,
836                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
837      }
838    }
839
840    size = numElements;
841
842    // Multiply by the type size if necessary.  This multiplier
843    // includes all the factors for nested arrays.
844    //
845    // This step also causes numElements to be scaled up by the
846    // nested-array factor if necessary.  Overflow on this computation
847    // can be ignored because the result shouldn't be used if
848    // allocation fails.
849    if (typeSizeMultiplier != 1) {
850      llvm::Function *umul_with_overflow
851        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
852
853      llvm::Value *tsmV =
854        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
855      llvm::Value *result =
856          CGF.Builder.CreateCall(umul_with_overflow, {sizetsmV});
857
858      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result1);
859      if (hasOverflow)
860        hasOverflow = CGF.Builder.CreateOr(hasOverflowoverflowed);
861      else
862        hasOverflow = overflowed;
863
864      size = CGF.Builder.CreateExtractValue(result0);
865
866      // Also scale up numElements by the array size multiplier.
867      if (arraySizeMultiplier != 1) {
868        // If the base element type size is 1, then we can re-use the
869        // multiply we just did.
870        if (typeSize.isOne()) {
871          assert(arraySizeMultiplier == typeSizeMultiplier);
872          numElements = size;
873
874        // Otherwise we need a separate multiply.
875        } else {
876          llvm::Value *asmV =
877            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
878          numElements = CGF.Builder.CreateMul(numElementsasmV);
879        }
880      }
881    } else {
882      // numElements doesn't need to be scaled.
883      assert(arraySizeMultiplier == 1);
884    }
885
886    // Add in the cookie size if necessary.
887    if (cookieSize != 0) {
888      sizeWithoutCookie = size;
889
890      llvm::Function *uadd_with_overflow
891        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
892
893      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
894      llvm::Value *result =
895          CGF.Builder.CreateCall(uadd_with_overflow, {sizecookieSizeV});
896
897      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result1);
898      if (hasOverflow)
899        hasOverflow = CGF.Builder.CreateOr(hasOverflowoverflowed);
900      else
901        hasOverflow = overflowed;
902
903      size = CGF.Builder.CreateExtractValue(result0);
904    }
905
906    // If we had any possibility of dynamic overflow, make a select to
907    // overwrite 'size' with an all-ones value, which should cause
908    // operator new to throw.
909    if (hasOverflow)
910      size = CGF.Builder.CreateSelect(hasOverflow,
911                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
912                                      size);
913  }
914
915  if (cookieSize == 0)
916    sizeWithoutCookie = size;
917  else
918     (0) . __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 918, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
919
920  return size;
921}
922
923static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGFconst Expr *Init,
924                                    QualType AllocTypeAddress NewPtr,
925                                    AggValueSlot::Overlap_t MayOverlap) {
926  // FIXME: Refactor with EmitExprAsInit.
927  switch (CGF.getEvaluationKind(AllocType)) {
928  case TEK_Scalar:
929    CGF.EmitScalarInit(Initnullptr,
930                       CGF.MakeAddrLValue(NewPtrAllocType), false);
931    return;
932  case TEK_Complex:
933    CGF.EmitComplexExprIntoLValue(InitCGF.MakeAddrLValue(NewPtrAllocType),
934                                  /*isInit*/ true);
935    return;
936  case TEK_Aggregate: {
937    AggValueSlot Slot
938      = AggValueSlot::forAddr(NewPtrAllocType.getQualifiers(),
939                              AggValueSlot::IsDestructed,
940                              AggValueSlot::DoesNotNeedGCBarriers,
941                              AggValueSlot::IsNotAliased,
942                              MayOverlapAggValueSlot::IsNotZeroed,
943                              AggValueSlot::IsSanitizerChecked);
944    CGF.EmitAggExpr(InitSlot);
945    return;
946  }
947  }
948  llvm_unreachable("bad evaluation kind");
949}
950
951void CodeGenFunction::EmitNewArrayInitializer(
952    const CXXNewExpr *EQualType ElementTypellvm::Type *ElementTy,
953    Address BeginPtrllvm::Value *NumElements,
954    llvm::Value *AllocSizeWithoutCookie) {
955  // If we have a type with trivial initialization and no initializer,
956  // there's nothing to do.
957  if (!E->hasInitializer())
958    return;
959
960  Address CurPtr = BeginPtr;
961
962  unsigned InitListElements = 0;
963
964  const Expr *Init = E->getInitializer();
965  Address EndOfInit = Address::invalid();
966  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
967  EHScopeStack::stable_iterator Cleanup;
968  llvm::Instruction *CleanupDominator = nullptr;
969
970  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
971  CharUnits ElementAlign =
972    BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
973
974  // Attempt to perform zero-initialization using memset.
975  auto TryMemsetInitialization = [&]() -> bool {
976    // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
977    // we can initialize with a memset to -1.
978    if (!CGM.getTypes().isZeroInitializable(ElementType))
979      return false;
980
981    // Optimization: since zero initialization will just set the memory
982    // to all zeroes, generate a single memset to do it in one shot.
983
984    // Subtract out the size of any elements we've already initialized.
985    auto *RemainingSize = AllocSizeWithoutCookie;
986    if (InitListElements) {
987      // We know this can't overflow; we check this when doing the allocation.
988      auto *InitializedSize = llvm::ConstantInt::get(
989          RemainingSize->getType(),
990          getContext().getTypeSizeInChars(ElementType).getQuantity() *
991              InitListElements);
992      RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
993    }
994
995    // Create the memset.
996    Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
997    return true;
998  };
999
1000  // If the initializer is an initializer list, first do the explicit elements.
1001  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1002    // Initializing from a (braced) string literal is a special case; the init
1003    // list element does not initialize a (single) array element.
1004    if (ILE->isStringLiteralInit()) {
1005      // Initialize the initial portion of length equal to that of the string
1006      // literal. The allocation must be for at least this much; we emitted a
1007      // check for that earlier.
1008      AggValueSlot Slot =
1009          AggValueSlot::forAddr(CurPtrElementType.getQualifiers(),
1010                                AggValueSlot::IsDestructed,
1011                                AggValueSlot::DoesNotNeedGCBarriers,
1012                                AggValueSlot::IsNotAliased,
1013                                AggValueSlot::DoesNotOverlap,
1014                                AggValueSlot::IsNotZeroed,
1015                                AggValueSlot::IsSanitizerChecked);
1016      EmitAggExpr(ILE->getInit(0), Slot);
1017
1018      // Move past these elements.
1019      InitListElements =
1020          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1021              ->getSize().getZExtValue();
1022      CurPtr =
1023          Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1024                                            Builder.getSize(InitListElements),
1025                                            "string.init.end"),
1026                  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1027                                                          ElementSize));
1028
1029      // Zero out the rest, if any remain.
1030      llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1031      if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1032        bool OK = TryMemsetInitialization();
1033        (void)OK;
1034         (0) . __assert_fail ("OK && \"couldn't memset character type?\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1034, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(OK && "couldn't memset character type?");
1035      }
1036      return;
1037    }
1038
1039    InitListElements = ILE->getNumInits();
1040
1041    // If this is a multi-dimensional array new, we will initialize multiple
1042    // elements with each init list element.
1043    QualType AllocType = E->getAllocatedType();
1044    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1045            AllocType->getAsArrayTypeUnsafe())) {
1046      ElementTy = ConvertTypeForMem(AllocType);
1047      CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1048      InitListElements *= getContext().getConstantArrayElementCount(CAT);
1049    }
1050
1051    // Enter a partial-destruction Cleanup if necessary.
1052    if (needsEHCleanup(DtorKind)) {
1053      // In principle we could tell the Cleanup where we are more
1054      // directly, but the control flow can get so varied here that it
1055      // would actually be quite complex.  Therefore we go through an
1056      // alloca.
1057      EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1058                                   "array.init.end");
1059      CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1060      pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1061                                       ElementTypeElementAlign,
1062                                       getDestroyer(DtorKind));
1063      Cleanup = EHStack.stable_begin();
1064    }
1065
1066    CharUnits StartAlign = CurPtr.getAlignment();
1067    for (unsigned i = 0e = ILE->getNumInits(); i != e; ++i) {
1068      // Tell the cleanup that it needs to destroy up to this
1069      // element.  TODO: some of these stores can be trivially
1070      // observed to be unnecessary.
1071      if (EndOfInit.isValid()) {
1072        auto FinishedPtr =
1073          Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1074        Builder.CreateStore(FinishedPtr, EndOfInit);
1075      }
1076      // FIXME: If the last initializer is an incomplete initializer list for
1077      // an array, and we have an array filler, we can fold together the two
1078      // initialization loops.
1079      StoreAnyExprIntoOneUnit(*thisILE->getInit(i),
1080                              ILE->getInit(i)->getType(), CurPtr,
1081                              AggValueSlot::DoesNotOverlap);
1082      CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1083                                                 Builder.getSize(1),
1084                                                 "array.exp.next"),
1085                       StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1086    }
1087
1088    // The remaining elements are filled with the array filler expression.
1089    Init = ILE->getArrayFiller();
1090
1091    // Extract the initializer for the individual array elements by pulling
1092    // out the array filler from all the nested initializer lists. This avoids
1093    // generating a nested loop for the initialization.
1094    while (Init && Init->getType()->isConstantArrayType()) {
1095      auto *SubILE = dyn_cast<InitListExpr>(Init);
1096      if (!SubILE)
1097        break;
1098       (0) . __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1098, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1099      Init = SubILE->getArrayFiller();
1100    }
1101
1102    // Switch back to initializing one base element at a time.
1103    CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1104  }
1105
1106  // If all elements have already been initialized, skip any further
1107  // initialization.
1108  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1109  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1110    // If there was a Cleanup, deactivate it.
1111    if (CleanupDominator)
1112      DeactivateCleanupBlock(CleanupCleanupDominator);
1113    return;
1114  }
1115
1116   (0) . __assert_fail ("Init && \"have trailing elements to initialize but no initializer\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1116, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(Init && "have trailing elements to initialize but no initializer");
1117
1118  // If this is a constructor call, try to optimize it out, and failing that
1119  // emit a single loop to initialize all remaining elements.
1120  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1121    CXXConstructorDecl *Ctor = CCE->getConstructor();
1122    if (Ctor->isTrivial()) {
1123      // If new expression did not specify value-initialization, then there
1124      // is no initialization.
1125      if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1126        return;
1127
1128      if (TryMemsetInitialization())
1129        return;
1130    }
1131
1132    // Store the new Cleanup position for irregular Cleanups.
1133    //
1134    // FIXME: Share this cleanup with the constructor call emission rather than
1135    // having it create a cleanup of its own.
1136    if (EndOfInit.isValid())
1137      Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1138
1139    // Emit a constructor call loop to initialize the remaining elements.
1140    if (InitListElements)
1141      NumElements = Builder.CreateSub(
1142          NumElements,
1143          llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1144    EmitCXXAggrConstructorCall(CtorNumElementsCurPtrCCE,
1145                               /*NewPointerIsChecked*/true,
1146                               CCE->requiresZeroInitialization());
1147    return;
1148  }
1149
1150  // If this is value-initialization, we can usually use memset.
1151  ImplicitValueInitExpr IVIE(ElementType);
1152  if (isa<ImplicitValueInitExpr>(Init)) {
1153    if (TryMemsetInitialization())
1154      return;
1155
1156    // Switch to an ImplicitValueInitExpr for the element type. This handles
1157    // only one case: multidimensional array new of pointers to members. In
1158    // all other cases, we already have an initializer for the array element.
1159    Init = &IVIE;
1160  }
1161
1162  // At this point we should have found an initializer for the individual
1163  // elements of the array.
1164   (0) . __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1165, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1165 (0) . __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1165, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "got wrong type of element to initialize");
1166
1167  // If we have an empty initializer list, we can usually use memset.
1168  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1169    if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1170      return;
1171
1172  // If we have a struct whose every field is value-initialized, we can
1173  // usually use memset.
1174  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1175    if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1176      if (RType->getDecl()->isStruct()) {
1177        unsigned NumElements = 0;
1178        if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1179          NumElements = CXXRD->getNumBases();
1180        for (auto *Field : RType->getDecl()->fields())
1181          if (!Field->isUnnamedBitfield())
1182            ++NumElements;
1183        // FIXME: Recurse into nested InitListExprs.
1184        if (ILE->getNumInits() == NumElements)
1185          for (unsigned i = 0e = ILE->getNumInits(); i != e; ++i)
1186            if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1187              --NumElements;
1188        if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1189          return;
1190      }
1191    }
1192  }
1193
1194  // Create the loop blocks.
1195  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1196  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1197  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1198
1199  // Find the end of the array, hoisted out of the loop.
1200  llvm::Value *EndPtr =
1201    Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1202
1203  // If the number of elements isn't constant, we have to now check if there is
1204  // anything left to initialize.
1205  if (!ConstNum) {
1206    llvm::Value *IsEmpty =
1207      Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1208    Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1209  }
1210
1211  // Enter the loop.
1212  EmitBlock(LoopBB);
1213
1214  // Set up the current-element phi.
1215  llvm::PHINode *CurPtrPhi =
1216    Builder.CreatePHI(CurPtr.getType(), 2"array.cur");
1217  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1218
1219  CurPtr = Address(CurPtrPhi, ElementAlign);
1220
1221  // Store the new Cleanup position for irregular Cleanups.
1222  if (EndOfInit.isValid())
1223    Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1224
1225  // Enter a partial-destruction Cleanup if necessary.
1226  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1227    pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1228                                   ElementTypeElementAlign,
1229                                   getDestroyer(DtorKind));
1230    Cleanup = EHStack.stable_begin();
1231    CleanupDominator = Builder.CreateUnreachable();
1232  }
1233
1234  // Emit the initializer into this element.
1235  StoreAnyExprIntoOneUnit(*thisInitInit->getType(), CurPtr,
1236                          AggValueSlot::DoesNotOverlap);
1237
1238  // Leave the Cleanup if we entered one.
1239  if (CleanupDominator) {
1240    DeactivateCleanupBlock(CleanupCleanupDominator);
1241    CleanupDominator->eraseFromParent();
1242  }
1243
1244  // Advance to the next element by adjusting the pointer type as necessary.
1245  llvm::Value *NextPtr =
1246    Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1247                                       "array.next");
1248
1249  // Check whether we've gotten to the end of the array and, if so,
1250  // exit the loop.
1251  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1252  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1253  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1254
1255  EmitBlock(ContBB);
1256}
1257
1258static void EmitNewInitializer(CodeGenFunction &CGFconst CXXNewExpr *E,
1259                               QualType ElementTypellvm::Type *ElementTy,
1260                               Address NewPtrllvm::Value *NumElements,
1261                               llvm::Value *AllocSizeWithoutCookie) {
1262  ApplyDebugLocation DL(CGFE);
1263  if (E->isArray())
1264    CGF.EmitNewArrayInitializer(EElementTypeElementTyNewPtrNumElements,
1265                                AllocSizeWithoutCookie);
1266  else if (const Expr *Init = E->getInitializer())
1267    StoreAnyExprIntoOneUnit(CGFInitE->getAllocatedType(), NewPtr,
1268                            AggValueSlot::DoesNotOverlap);
1269}
1270
1271/// Emit a call to an operator new or operator delete function, as implicitly
1272/// created by new-expressions and delete-expressions.
1273static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1274                                const FunctionDecl *CalleeDecl,
1275                                const FunctionProtoType *CalleeType,
1276                                const CallArgList &Args) {
1277  llvm::CallBase *CallOrInvoke;
1278  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1279  CGCallee Callee = CGCallee::forDirect(CalleePtrGlobalDecl(CalleeDecl));
1280  RValue RV =
1281      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1282                       Args, CalleeType, /*chainCall=*/false),
1283                   Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1284
1285  /// C++1y [expr.new]p10:
1286  ///   [In a new-expression,] an implementation is allowed to omit a call
1287  ///   to a replaceable global allocation function.
1288  ///
1289  /// We model such elidable calls with the 'builtin' attribute.
1290  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1291  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1292      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1293    CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1294                               llvm::Attribute::Builtin);
1295  }
1296
1297  return RV;
1298}
1299
1300RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1301                                                 const CallExpr *TheCall,
1302                                                 bool IsDelete) {
1303  CallArgList Args;
1304  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1305  // Find the allocation or deallocation function that we're calling.
1306  ASTContext &Ctx = getContext();
1307  DeclarationName Name = Ctx.DeclarationNames
1308      .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1309
1310  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1311    if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1312      if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1313        return EmitNewDeleteCall(*this, FD, Type, Args);
1314  llvm_unreachable("predeclared global operator new/delete is missing");
1315}
1316
1317namespace {
1318/// The parameters to pass to a usual operator delete.
1319struct UsualDeleteParams {
1320  bool DestroyingDelete = false;
1321  bool Size = false;
1322  bool Alignment = false;
1323};
1324}
1325
1326static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1327  UsualDeleteParams Params;
1328
1329  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1330  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1331
1332  // The first argument is always a void*.
1333  ++AI;
1334
1335  // The next parameter may be a std::destroying_delete_t.
1336  if (FD->isDestroyingOperatorDelete()) {
1337    Params.DestroyingDelete = true;
1338    assert(AI != AE);
1339    ++AI;
1340  }
1341
1342  // Figure out what other parameters we should be implicitly passing.
1343  if (AI != AE && (*AI)->isIntegerType()) {
1344    Params.Size = true;
1345    ++AI;
1346  }
1347
1348  if (AI != AE && (*AI)->isAlignValT()) {
1349    Params.Alignment = true;
1350    ++AI;
1351  }
1352
1353   (0) . __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1353, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(AI == AE && "unexpected usual deallocation function parameter");
1354  return Params;
1355}
1356
1357namespace {
1358  /// A cleanup to call the given 'operator delete' function upon abnormal
1359  /// exit from a new expression. Templated on a traits type that deals with
1360  /// ensuring that the arguments dominate the cleanup if necessary.
1361  template<typename Traits>
1362  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1363    /// Type used to hold llvm::Value*s.
1364    typedef typename Traits::ValueTy ValueTy;
1365    /// Type used to hold RValues.
1366    typedef typename Traits::RValueTy RValueTy;
1367    struct PlacementArg {
1368      RValueTy ArgValue;
1369      QualType ArgType;
1370    };
1371
1372    unsigned NumPlacementArgs : 31;
1373    unsigned PassAlignmentToPlacementDelete : 1;
1374    const FunctionDecl *OperatorDelete;
1375    ValueTy Ptr;
1376    ValueTy AllocSize;
1377    CharUnits AllocAlign;
1378
1379    PlacementArg *getPlacementArgs() {
1380      return reinterpret_cast<PlacementArg *>(this + 1);
1381    }
1382
1383  public:
1384    static size_t getExtraSize(size_t NumPlacementArgs) {
1385      return NumPlacementArgs * sizeof(PlacementArg);
1386    }
1387
1388    CallDeleteDuringNew(size_t NumPlacementArgs,
1389                        const FunctionDecl *OperatorDeleteValueTy Ptr,
1390                        ValueTy AllocSizebool PassAlignmentToPlacementDelete,
1391                        CharUnits AllocAlign)
1392      : NumPlacementArgs(NumPlacementArgs),
1393        PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1394        OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1395        AllocAlign(AllocAlign) {}
1396
1397    void setPlacementArg(unsigned IRValueTy ArgQualType Type) {
1398       (0) . __assert_fail ("I < NumPlacementArgs && \"index out of range\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1398, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(I < NumPlacementArgs && "index out of range");
1399      getPlacementArgs()[I] = {ArgType};
1400    }
1401
1402    void Emit(CodeGenFunction &CGFFlags flags) override {
1403      const FunctionProtoType *FPT =
1404          OperatorDelete->getType()->getAs<FunctionProtoType>();
1405      CallArgList DeleteArgs;
1406
1407      // The first argument is always a void* (or C* for a destroying operator
1408      // delete for class type C).
1409      DeleteArgs.add(Traits::get(CGFPtr), FPT->getParamType(0));
1410
1411      // Figure out what other parameters we should be implicitly passing.
1412      UsualDeleteParams Params;
1413      if (NumPlacementArgs) {
1414        // A placement deallocation function is implicitly passed an alignment
1415        // if the placement allocation function was, but is never passed a size.
1416        Params.Alignment = PassAlignmentToPlacementDelete;
1417      } else {
1418        // For a non-placement new-expression, 'operator delete' can take a
1419        // size and/or an alignment if it has the right parameters.
1420        Params = getUsualDeleteParams(OperatorDelete);
1421      }
1422
1423       (0) . __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1424, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!Params.DestroyingDelete &&
1424 (0) . __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1424, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">             "should not call destroying delete in a new-expression");
1425
1426      // The second argument can be a std::size_t (for non-placement delete).
1427      if (Params.Size)
1428        DeleteArgs.add(Traits::get(CGFAllocSize),
1429                       CGF.getContext().getSizeType());
1430
1431      // The next (second or third) argument can be a std::align_val_t, which
1432      // is an enum whose underlying type is std::size_t.
1433      // FIXME: Use the right type as the parameter type. Note that in a call
1434      // to operator delete(size_t, ...), we may not have it available.
1435      if (Params.Alignment)
1436        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1437                           CGF.SizeTy, AllocAlign.getQuantity())),
1438                       CGF.getContext().getSizeType());
1439
1440      // Pass the rest of the arguments, which must match exactly.
1441      for (unsigned I = 0I != NumPlacementArgs; ++I) {
1442        auto Arg = getPlacementArgs()[I];
1443        DeleteArgs.add(Traits::get(CGFArg.ArgValue), Arg.ArgType);
1444      }
1445
1446      // Call 'operator delete'.
1447      EmitNewDeleteCall(CGFOperatorDeleteFPTDeleteArgs);
1448    }
1449  };
1450}
1451
1452/// Enter a cleanup to call 'operator delete' if the initializer in a
1453/// new-expression throws.
1454static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1455                                  const CXXNewExpr *E,
1456                                  Address NewPtr,
1457                                  llvm::Value *AllocSize,
1458                                  CharUnits AllocAlign,
1459                                  const CallArgList &NewArgs) {
1460  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1461
1462  // If we're not inside a conditional branch, then the cleanup will
1463  // dominate and we can do the easier (and more efficient) thing.
1464  if (!CGF.isInConditionalBranch()) {
1465    struct DirectCleanupTraits {
1466      typedef llvm::Value *ValueTy;
1467      typedef RValue RValueTy;
1468      static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1469      static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1470    };
1471
1472    typedef CallDeleteDuringNew<DirectCleanupTraitsDirectCleanup;
1473
1474    DirectCleanup *Cleanup = CGF.EHStack
1475      .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1476                                           E->getNumPlacementArgs(),
1477                                           E->getOperatorDelete(),
1478                                           NewPtr.getPointer(),
1479                                           AllocSize,
1480                                           E->passAlignment(),
1481                                           AllocAlign);
1482    for (unsigned I = 0N = E->getNumPlacementArgs(); I != N; ++I) {
1483      auto &Arg = NewArgs[I + NumNonPlacementArgs];
1484      Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1485    }
1486
1487    return;
1488  }
1489
1490  // Otherwise, we need to save all this stuff.
1491  DominatingValue<RValue>::saved_type SavedNewPtr =
1492    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1493  DominatingValue<RValue>::saved_type SavedAllocSize =
1494    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1495
1496  struct ConditionalCleanupTraits {
1497    typedef DominatingValue<RValue>::saved_type ValueTy;
1498    typedef DominatingValue<RValue>::saved_type RValueTy;
1499    static RValue get(CodeGenFunction &CGFValueTy V) {
1500      return V.restore(CGF);
1501    }
1502  };
1503  typedef CallDeleteDuringNew<ConditionalCleanupTraitsConditionalCleanup;
1504
1505  ConditionalCleanup *Cleanup = CGF.EHStack
1506    .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1507                                              E->getNumPlacementArgs(),
1508                                              E->getOperatorDelete(),
1509                                              SavedNewPtr,
1510                                              SavedAllocSize,
1511                                              E->passAlignment(),
1512                                              AllocAlign);
1513  for (unsigned I = 0N = E->getNumPlacementArgs(); I != N; ++I) {
1514    auto &Arg = NewArgs[I + NumNonPlacementArgs];
1515    Cleanup->setPlacementArg(
1516        I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1517  }
1518
1519  CGF.initFullExprCleanup();
1520}
1521
1522llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1523  // The element type being allocated.
1524  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1525
1526  // 1. Build a call to the allocation function.
1527  FunctionDecl *allocator = E->getOperatorNew();
1528
1529  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1530  unsigned minElements = 0;
1531  if (E->isArray() && E->hasInitializer()) {
1532    const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1533    if (ILE && ILE->isStringLiteralInit())
1534      minElements =
1535          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1536              ->getSize().getZExtValue();
1537    else if (ILE)
1538      minElements = ILE->getNumInits();
1539  }
1540
1541  llvm::Value *numElements = nullptr;
1542  llvm::Value *allocSizeWithoutCookie = nullptr;
1543  llvm::Value *allocSize =
1544    EmitCXXNewAllocSize(*thisEminElementsnumElements,
1545                        allocSizeWithoutCookie);
1546  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1547
1548  // Emit the allocation call.  If the allocator is a global placement
1549  // operator, just "inline" it directly.
1550  Address allocation = Address::invalid();
1551  CallArgList allocatorArgs;
1552  if (allocator->isReservedGlobalPlacementOperator()) {
1553    getNumPlacementArgs() == 1", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1553, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(E->getNumPlacementArgs() == 1);
1554    const Expr *arg = *E->placement_arguments().begin();
1555
1556    LValueBaseInfo BaseInfo;
1557    allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1558
1559    // The pointer expression will, in many cases, be an opaque void*.
1560    // In these cases, discard the computed alignment and use the
1561    // formal alignment of the allocated type.
1562    if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1563      allocation = Address(allocation.getPointer(), allocAlign);
1564
1565    // Set up allocatorArgs for the call to operator delete if it's not
1566    // the reserved global operator.
1567    if (E->getOperatorDelete() &&
1568        !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1569      allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1570      allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1571    }
1572
1573  } else {
1574    const FunctionProtoType *allocatorType =
1575      allocator->getType()->castAs<FunctionProtoType>();
1576    unsigned ParamsToSkip = 0;
1577
1578    // The allocation size is the first argument.
1579    QualType sizeType = getContext().getSizeType();
1580    allocatorArgs.add(RValue::get(allocSize), sizeType);
1581    ++ParamsToSkip;
1582
1583    if (allocSize != allocSizeWithoutCookie) {
1584      CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1585      allocAlign = std::max(allocAligncookieAlign);
1586    }
1587
1588    // The allocation alignment may be passed as the second argument.
1589    if (E->passAlignment()) {
1590      QualType AlignValT = sizeType;
1591      if (allocatorType->getNumParams() > 1) {
1592        AlignValT = allocatorType->getParamType(1);
1593         (0) . __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1596, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(getContext().hasSameUnqualifiedType(
1594 (0) . __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1596, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">                   AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1595 (0) . __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1596, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">                   sizeType) &&
1596 (0) . __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1596, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">               "wrong type for alignment parameter");
1597        ++ParamsToSkip;
1598      } else {
1599        // Corner case, passing alignment to 'operator new(size_t, ...)'.
1600         (0) . __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1600, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(allocator->isVariadic() && "can't pass alignment to allocator");
1601      }
1602      allocatorArgs.add(
1603          RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1604          AlignValT);
1605    }
1606
1607    // FIXME: Why do we not pass a CalleeDecl here?
1608    EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1609                 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1610
1611    RValue RV =
1612      EmitNewDeleteCall(*thisallocatorallocatorTypeallocatorArgs);
1613
1614    // If this was a call to a global replaceable allocation function that does
1615    // not take an alignment argument, the allocator is known to produce
1616    // storage that's suitably aligned for any object that fits, up to a known
1617    // threshold. Otherwise assume it's suitably aligned for the allocated type.
1618    CharUnits allocationAlign = allocAlign;
1619    if (!E->passAlignment() &&
1620        allocator->isReplaceableGlobalAllocationFunction()) {
1621      unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1622          Target.getNewAlign(), getContext().getTypeSize(allocType)));
1623      allocationAlign = std::max(
1624          allocationAligngetContext().toCharUnitsFromBits(AllocatorAlign));
1625    }
1626
1627    allocation = Address(RV.getScalarVal(), allocationAlign);
1628  }
1629
1630  // Emit a null check on the allocation result if the allocation
1631  // function is allowed to return null (because it has a non-throwing
1632  // exception spec or is the reserved placement new) and we have an
1633  // interesting initializer will be running sanitizers on the initialization.
1634  bool nullCheck = E->shouldNullCheckAllocation() &&
1635                   (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1636                    sanitizePerformTypeCheck());
1637
1638  llvm::BasicBlock *nullCheckBB = nullptr;
1639  llvm::BasicBlock *contBB = nullptr;
1640
1641  // The null-check means that the initializer is conditionally
1642  // evaluated.
1643  ConditionalEvaluation conditional(*this);
1644
1645  if (nullCheck) {
1646    conditional.begin(*this);
1647
1648    nullCheckBB = Builder.GetInsertBlock();
1649    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1650    contBB = createBasicBlock("new.cont");
1651
1652    llvm::Value *isNull =
1653      Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1654    Builder.CreateCondBr(isNull, contBB, notNullBB);
1655    EmitBlock(notNullBB);
1656  }
1657
1658  // If there's an operator delete, enter a cleanup to call it if an
1659  // exception is thrown.
1660  EHScopeStack::stable_iterator operatorDeleteCleanup;
1661  llvm::Instruction *cleanupDominator = nullptr;
1662  if (E->getOperatorDelete() &&
1663      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1664    EnterNewDeleteCleanup(*thisEallocationallocSizeallocAlign,
1665                          allocatorArgs);
1666    operatorDeleteCleanup = EHStack.stable_begin();
1667    cleanupDominator = Builder.CreateUnreachable();
1668  }
1669
1670  assert((allocSize == allocSizeWithoutCookie) ==
1671         CalculateCookiePadding(*this, E).isZero());
1672  if (allocSize != allocSizeWithoutCookie) {
1673    isArray()", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1673, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(E->isArray());
1674    allocation = CGM.getCXXABI().InitializeArrayCookie(*thisallocation,
1675                                                       numElements,
1676                                                       EallocType);
1677  }
1678
1679  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1680  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1681
1682  // Passing pointer through launder.invariant.group to avoid propagation of
1683  // vptrs information which may be included in previous type.
1684  // To not break LTO with different optimizations levels, we do it regardless
1685  // of optimization level.
1686  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1687      allocator->isReservedGlobalPlacementOperator())
1688    result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1689                     result.getAlignment());
1690
1691  // Emit sanitizer checks for pointer value now, so that in the case of an
1692  // array it was checked only once and not at each constructor call. We may
1693  // have already checked that the pointer is non-null.
1694  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1695  // we'll null check the wrong pointer here.
1696  SanitizerSet SkippedChecks;
1697  SkippedChecks.set(SanitizerKind::NullnullCheck);
1698  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1699                E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1700                result.getPointer(), allocTyperesult.getAlignment(),
1701                SkippedChecksnumElements);
1702
1703  EmitNewInitializer(*thisEallocTypeelementTyresultnumElements,
1704                     allocSizeWithoutCookie);
1705  if (E->isArray()) {
1706    // NewPtr is a pointer to the base element type.  If we're
1707    // allocating an array of arrays, we'll need to cast back to the
1708    // array pointer type.
1709    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1710    if (result.getType() != resultType)
1711      result = Builder.CreateBitCast(result, resultType);
1712  }
1713
1714  // Deactivate the 'operator delete' cleanup if we finished
1715  // initialization.
1716  if (operatorDeleteCleanup.isValid()) {
1717    DeactivateCleanupBlock(operatorDeleteCleanupcleanupDominator);
1718    cleanupDominator->eraseFromParent();
1719  }
1720
1721  llvm::Value *resultPtr = result.getPointer();
1722  if (nullCheck) {
1723    conditional.end(*this);
1724
1725    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1726    EmitBlock(contBB);
1727
1728    llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1729    PHI->addIncoming(resultPtr, notNullBB);
1730    PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1731                     nullCheckBB);
1732
1733    resultPtr = PHI;
1734  }
1735
1736  return resultPtr;
1737}
1738
1739void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1740                                     llvm::Value *PtrQualType DeleteTy,
1741                                     llvm::Value *NumElements,
1742                                     CharUnits CookieSize) {
1743  getOverloadedOperator() == OO_Array_Delete", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1744, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert((!NumElements && CookieSize.isZero()) ||
1744getOverloadedOperator() == OO_Array_Delete", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1744, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1745
1746  const FunctionProtoType *DeleteFTy =
1747    DeleteFD->getType()->getAs<FunctionProtoType>();
1748
1749  CallArgList DeleteArgs;
1750
1751  auto Params = getUsualDeleteParams(DeleteFD);
1752  auto ParamTypeIt = DeleteFTy->param_type_begin();
1753
1754  // Pass the pointer itself.
1755  QualType ArgTy = *ParamTypeIt++;
1756  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1757  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1758
1759  // Pass the std::destroying_delete tag if present.
1760  if (Params.DestroyingDelete) {
1761    QualType DDTag = *ParamTypeIt++;
1762    // Just pass an 'undef'. We expect the tag type to be an empty struct.
1763    auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1764    DeleteArgs.add(RValue::get(V), DDTag);
1765  }
1766
1767  // Pass the size if the delete function has a size_t parameter.
1768  if (Params.Size) {
1769    QualType SizeType = *ParamTypeIt++;
1770    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1771    llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1772                                               DeleteTypeSize.getQuantity());
1773
1774    // For array new, multiply by the number of elements.
1775    if (NumElements)
1776      Size = Builder.CreateMul(Size, NumElements);
1777
1778    // If there is a cookie, add the cookie size.
1779    if (!CookieSize.isZero())
1780      Size = Builder.CreateAdd(
1781          Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1782
1783    DeleteArgs.add(RValue::get(Size), SizeType);
1784  }
1785
1786  // Pass the alignment if the delete function has an align_val_t parameter.
1787  if (Params.Alignment) {
1788    QualType AlignValType = *ParamTypeIt++;
1789    CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1790        getContext().getTypeAlignIfKnown(DeleteTy));
1791    llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1792                                                DeleteTypeAlign.getQuantity());
1793    DeleteArgs.add(RValue::get(Align), AlignValType);
1794  }
1795
1796   (0) . __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1797, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1797 (0) . __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1797, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "unknown parameter to usual delete function");
1798
1799  // Emit the call to delete.
1800  EmitNewDeleteCall(*thisDeleteFDDeleteFTyDeleteArgs);
1801}
1802
1803namespace {
1804  /// Calls the given 'operator delete' on a single object.
1805  struct CallObjectDelete final : EHScopeStack::Cleanup {
1806    llvm::Value *Ptr;
1807    const FunctionDecl *OperatorDelete;
1808    QualType ElementType;
1809
1810    CallObjectDelete(llvm::Value *Ptr,
1811                     const FunctionDecl *OperatorDelete,
1812                     QualType ElementType)
1813      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1814
1815    void Emit(CodeGenFunction &CGFFlags flags) override {
1816      CGF.EmitDeleteCall(OperatorDeletePtrElementType);
1817    }
1818  };
1819}
1820
1821void
1822CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1823                                             llvm::Value *CompletePtr,
1824                                             QualType ElementType) {
1825  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1826                                        OperatorDelete, ElementType);
1827}
1828
1829/// Emit the code for deleting a single object with a destroying operator
1830/// delete. If the element type has a non-virtual destructor, Ptr has already
1831/// been converted to the type of the parameter of 'operator delete'. Otherwise
1832/// Ptr points to an object of the static type.
1833static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1834                                       const CXXDeleteExpr *DEAddress Ptr,
1835                                       QualType ElementType) {
1836  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1837  if (Dtor && Dtor->isVirtual())
1838    CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGFDEPtrElementType,
1839                                                Dtor);
1840  else
1841    CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1842}
1843
1844/// Emit the code for deleting a single object.
1845static void EmitObjectDelete(CodeGenFunction &CGF,
1846                             const CXXDeleteExpr *DE,
1847                             Address Ptr,
1848                             QualType ElementType) {
1849  // C++11 [expr.delete]p3:
1850  //   If the static type of the object to be deleted is different from its
1851  //   dynamic type, the static type shall be a base class of the dynamic type
1852  //   of the object to be deleted and the static type shall have a virtual
1853  //   destructor or the behavior is undefined.
1854  CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1855                    DE->getExprLoc(), Ptr.getPointer(),
1856                    ElementType);
1857
1858  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1859  isDestroyingOperatorDelete()", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1859, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!OperatorDelete->isDestroyingOperatorDelete());
1860
1861  // Find the destructor for the type, if applicable.  If the
1862  // destructor is virtual, we'll just emit the vcall and return.
1863  const CXXDestructorDecl *Dtor = nullptr;
1864  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1865    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1866    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1867      Dtor = RD->getDestructor();
1868
1869      if (Dtor->isVirtual()) {
1870        CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGFDEPtrElementType,
1871                                                    Dtor);
1872        return;
1873      }
1874    }
1875  }
1876
1877  // Make sure that we call delete even if the dtor throws.
1878  // This doesn't have to a conditional cleanup because we're going
1879  // to pop it off in a second.
1880  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1881                                            Ptr.getPointer(),
1882                                            OperatorDeleteElementType);
1883
1884  if (Dtor)
1885    CGF.EmitCXXDestructorCall(DtorDtor_Complete,
1886                              /*ForVirtualBase=*/false,
1887                              /*Delegating=*/false,
1888                              Ptr);
1889  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1890    switch (Lifetime) {
1891    case Qualifiers::OCL_None:
1892    case Qualifiers::OCL_ExplicitNone:
1893    case Qualifiers::OCL_Autoreleasing:
1894      break;
1895
1896    case Qualifiers::OCL_Strong:
1897      CGF.EmitARCDestroyStrong(PtrARCPreciseLifetime);
1898      break;
1899
1900    case Qualifiers::OCL_Weak:
1901      CGF.EmitARCDestroyWeak(Ptr);
1902      break;
1903    }
1904  }
1905
1906  CGF.PopCleanupBlock();
1907}
1908
1909namespace {
1910  /// Calls the given 'operator delete' on an array of objects.
1911  struct CallArrayDelete final : EHScopeStack::Cleanup {
1912    llvm::Value *Ptr;
1913    const FunctionDecl *OperatorDelete;
1914    llvm::Value *NumElements;
1915    QualType ElementType;
1916    CharUnits CookieSize;
1917
1918    CallArrayDelete(llvm::Value *Ptr,
1919                    const FunctionDecl *OperatorDelete,
1920                    llvm::Value *NumElements,
1921                    QualType ElementType,
1922                    CharUnits CookieSize)
1923      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1924        ElementType(ElementType), CookieSize(CookieSize) {}
1925
1926    void Emit(CodeGenFunction &CGFFlags flags) override {
1927      CGF.EmitDeleteCall(OperatorDeletePtrElementTypeNumElements,
1928                         CookieSize);
1929    }
1930  };
1931}
1932
1933/// Emit the code for deleting an array of objects.
1934static void EmitArrayDelete(CodeGenFunction &CGF,
1935                            const CXXDeleteExpr *E,
1936                            Address deletedPtr,
1937                            QualType elementType) {
1938  llvm::Value *numElements = nullptr;
1939  llvm::Value *allocatedPtr = nullptr;
1940  CharUnits cookieSize;
1941  CGF.CGM.getCXXABI().ReadArrayCookie(CGFdeletedPtrEelementType,
1942                                      numElementsallocatedPtrcookieSize);
1943
1944   (0) . __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1944, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1945
1946  // Make sure that we call delete even if one of the dtors throws.
1947  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1948  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1949                                           allocatedPtroperatorDelete,
1950                                           numElementselementType,
1951                                           cookieSize);
1952
1953  // Destroy the elements.
1954  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1955     (0) . __assert_fail ("numElements && \"no element count for a type with a destructor!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 1955, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(numElements && "no element count for a type with a destructor!");
1956
1957    CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1958    CharUnits elementAlign =
1959      deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1960
1961    llvm::Value *arrayBegin = deletedPtr.getPointer();
1962    llvm::Value *arrayEnd =
1963      CGF.Builder.CreateInBoundsGEP(arrayBeginnumElements"delete.end");
1964
1965    // Note that it is legal to allocate a zero-length array, and we
1966    // can never fold the check away because the length should always
1967    // come from a cookie.
1968    CGF.emitArrayDestroy(arrayBeginarrayEndelementTypeelementAlign,
1969                         CGF.getDestroyer(dtorKind),
1970                         /*checkZeroLength*/ true,
1971                         CGF.needsEHCleanup(dtorKind));
1972  }
1973
1974  // Pop the cleanup block.
1975  CGF.PopCleanupBlock();
1976}
1977
1978void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1979  const Expr *Arg = E->getArgument();
1980  Address Ptr = EmitPointerWithAlignment(Arg);
1981
1982  // Null check the pointer.
1983  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1984  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1985
1986  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1987
1988  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1989  EmitBlock(DeleteNotNull);
1990
1991  QualType DeleteTy = E->getDestroyedType();
1992
1993  // A destroying operator delete overrides the entire operation of the
1994  // delete expression.
1995  if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1996    EmitDestroyingObjectDelete(*thisEPtrDeleteTy);
1997    EmitBlock(DeleteEnd);
1998    return;
1999  }
2000
2001  // We might be deleting a pointer to array.  If so, GEP down to the
2002  // first non-array element.
2003  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2004  if (DeleteTy->isConstantArrayType()) {
2005    llvm::Value *Zero = Builder.getInt32(0);
2006    SmallVector<llvm::Value*,8GEP;
2007
2008    GEP.push_back(Zero); // point at the outermost array
2009
2010    // For each layer of array type we're pointing at:
2011    while (const ConstantArrayType *Arr
2012             = getContext().getAsConstantArrayType(DeleteTy)) {
2013      // 1. Unpeel the array type.
2014      DeleteTy = Arr->getElementType();
2015
2016      // 2. GEP to the first element of the array.
2017      GEP.push_back(Zero);
2018    }
2019
2020    Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2021                  Ptr.getAlignment());
2022  }
2023
2024  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2025
2026  if (E->isArrayForm()) {
2027    EmitArrayDelete(*thisEPtrDeleteTy);
2028  } else {
2029    EmitObjectDelete(*thisEPtrDeleteTy);
2030  }
2031
2032  EmitBlock(DeleteEnd);
2033}
2034
2035static bool isGLValueFromPointerDeref(const Expr *E) {
2036  E = E->IgnoreParens();
2037
2038  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2039    if (!CE->getSubExpr()->isGLValue())
2040      return false;
2041    return isGLValueFromPointerDeref(CE->getSubExpr());
2042  }
2043
2044  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2045    return isGLValueFromPointerDeref(OVE->getSourceExpr());
2046
2047  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2048    if (BO->getOpcode() == BO_Comma)
2049      return isGLValueFromPointerDeref(BO->getRHS());
2050
2051  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2052    return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2053           isGLValueFromPointerDeref(ACO->getFalseExpr());
2054
2055  // C++11 [expr.sub]p1:
2056  //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2057  if (isa<ArraySubscriptExpr>(E))
2058    return true;
2059
2060  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2061    if (UO->getOpcode() == UO_Deref)
2062      return true;
2063
2064  return false;
2065}
2066
2067static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGFconst Expr *E,
2068                                         llvm::Type *StdTypeInfoPtrTy) {
2069  // Get the vtable pointer.
2070  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2071
2072  QualType SrcRecordTy = E->getType();
2073
2074  // C++ [class.cdtor]p4:
2075  //   If the operand of typeid refers to the object under construction or
2076  //   destruction and the static type of the operand is neither the constructor
2077  //   or destructor’s class nor one of its bases, the behavior is undefined.
2078  CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperationE->getExprLoc(),
2079                    ThisPtr.getPointer(), SrcRecordTy);
2080
2081  // C++ [expr.typeid]p2:
2082  //   If the glvalue expression is obtained by applying the unary * operator to
2083  //   a pointer and the pointer is a null pointer value, the typeid expression
2084  //   throws the std::bad_typeid exception.
2085  //
2086  // However, this paragraph's intent is not clear.  We choose a very generous
2087  // interpretation which implores us to consider comma operators, conditional
2088  // operators, parentheses and other such constructs.
2089  if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2090          isGLValueFromPointerDeref(E), SrcRecordTy)) {
2091    llvm::BasicBlock *BadTypeidBlock =
2092        CGF.createBasicBlock("typeid.bad_typeid");
2093    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2094
2095    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2096    CGF.Builder.CreateCondBr(IsNullBadTypeidBlockEndBlock);
2097
2098    CGF.EmitBlock(BadTypeidBlock);
2099    CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2100    CGF.EmitBlock(EndBlock);
2101  }
2102
2103  return CGF.CGM.getCXXABI().EmitTypeid(CGFSrcRecordTyThisPtr,
2104                                        StdTypeInfoPtrTy);
2105}
2106
2107llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2108  llvm::Type *StdTypeInfoPtrTy =
2109    ConvertType(E->getType())->getPointerTo();
2110
2111  if (E->isTypeOperand()) {
2112    llvm::Constant *TypeInfo =
2113        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2114    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2115  }
2116
2117  // C++ [expr.typeid]p2:
2118  //   When typeid is applied to a glvalue expression whose type is a
2119  //   polymorphic class type, the result refers to a std::type_info object
2120  //   representing the type of the most derived object (that is, the dynamic
2121  //   type) to which the glvalue refers.
2122  if (E->isPotentiallyEvaluated())
2123    return EmitTypeidFromVTable(*thisE->getExprOperand(),
2124                                StdTypeInfoPtrTy);
2125
2126  QualType OperandTy = E->getExprOperand()->getType();
2127  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2128                               StdTypeInfoPtrTy);
2129}
2130
2131static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2132                                          QualType DestTy) {
2133  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2134  if (DestTy->isPointerType())
2135    return llvm::Constant::getNullValue(DestLTy);
2136
2137  /// C++ [expr.dynamic.cast]p9:
2138  ///   A failed cast to reference type throws std::bad_cast
2139  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2140    return nullptr;
2141
2142  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2143  return llvm::UndefValue::get(DestLTy);
2144}
2145
2146llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2147                                              const CXXDynamicCastExpr *DCE) {
2148  CGM.EmitExplicitCastExprType(DCEthis);
2149  QualType DestTy = DCE->getTypeAsWritten();
2150
2151  QualType SrcTy = DCE->getSubExpr()->getType();
2152
2153  // C++ [expr.dynamic.cast]p7:
2154  //   If T is "pointer to cv void," then the result is a pointer to the most
2155  //   derived object pointed to by v.
2156  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2157
2158  bool isDynamicCastToVoid;
2159  QualType SrcRecordTy;
2160  QualType DestRecordTy;
2161  if (DestPTy) {
2162    isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2163    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2164    DestRecordTy = DestPTy->getPointeeType();
2165  } else {
2166    isDynamicCastToVoid = false;
2167    SrcRecordTy = SrcTy;
2168    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2169  }
2170
2171  // C++ [class.cdtor]p5:
2172  //   If the operand of the dynamic_cast refers to the object under
2173  //   construction or destruction and the static type of the operand is not a
2174  //   pointer to or object of the constructor or destructor’s own class or one
2175  //   of its bases, the dynamic_cast results in undefined behavior.
2176  EmitTypeCheck(TCK_DynamicOperationDCE->getExprLoc(), ThisAddr.getPointer(),
2177                SrcRecordTy);
2178
2179  if (DCE->isAlwaysNull())
2180    if (llvm::Value *T = EmitDynamicCastToNull(*thisDestTy))
2181      return T;
2182
2183   (0) . __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 2183, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2184
2185  // C++ [expr.dynamic.cast]p4:
2186  //   If the value of v is a null pointer value in the pointer case, the result
2187  //   is the null pointer value of type T.
2188  bool ShouldNullCheckSrcValue =
2189      CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2190                                                         SrcRecordTy);
2191
2192  llvm::BasicBlock *CastNull = nullptr;
2193  llvm::BasicBlock *CastNotNull = nullptr;
2194  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2195
2196  if (ShouldNullCheckSrcValue) {
2197    CastNull = createBasicBlock("dynamic_cast.null");
2198    CastNotNull = createBasicBlock("dynamic_cast.notnull");
2199
2200    llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2201    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2202    EmitBlock(CastNotNull);
2203  }
2204
2205  llvm::Value *Value;
2206  if (isDynamicCastToVoid) {
2207    Value = CGM.getCXXABI().EmitDynamicCastToVoid(*thisThisAddrSrcRecordTy,
2208                                                  DestTy);
2209  } else {
2210     (0) . __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 2211, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(DestRecordTy->isRecordType() &&
2211 (0) . __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CGExprCXX.cpp", 2211, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">           "destination type must be a record type!");
2212    Value = CGM.getCXXABI().EmitDynamicCastCall(*thisThisAddrSrcRecordTy,
2213                                                DestTyDestRecordTyCastEnd);
2214    CastNotNull = Builder.GetInsertBlock();
2215  }
2216
2217  if (ShouldNullCheckSrcValue) {
2218    EmitBranch(CastEnd);
2219
2220    EmitBlock(CastNull);
2221    EmitBranch(CastEnd);
2222  }
2223
2224  EmitBlock(CastEnd);
2225
2226  if (ShouldNullCheckSrcValue) {
2227    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2228    PHI->addIncoming(Value, CastNotNull);
2229    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2230
2231    Value = PHI;
2232  }
2233
2234  return Value;
2235}
2236
clang::CodeGen::CodeGenFunction::EmitCXXMemberOrOperatorCall
clang::CodeGen::CodeGenFunction::EmitCXXDestructorCall
clang::CodeGen::CodeGenFunction::EmitCXXPseudoDestructorExpr
clang::CodeGen::CodeGenFunction::EmitCXXMemberCallExpr
clang::CodeGen::CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr
clang::CodeGen::CodeGenFunction::EmitCXXMemberPointerCallExpr
clang::CodeGen::CodeGenFunction::EmitCXXOperatorMemberCallExpr
clang::CodeGen::CodeGenFunction::EmitCUDAKernelCallExpr
clang::CodeGen::CodeGenFunction::EmitCXXConstructExpr
clang::CodeGen::CodeGenFunction::EmitSynthesizedCXXCopyCtor
clang::CodeGen::CodeGenFunction::EmitNewArrayInitializer
clang::CodeGen::CodeGenFunction::EmitBuiltinNewDeleteCall
clang::CodeGen::CodeGenFunction::EmitCXXNewExpr
clang::CodeGen::CodeGenFunction::EmitDeleteCall
clang::CodeGen::CodeGenFunction::pushCallObjectDeleteCleanup
clang::CodeGen::CodeGenFunction::EmitCXXDeleteExpr
clang::CodeGen::CodeGenFunction::EmitCXXTypeidExpr
clang::CodeGen::CodeGenFunction::EmitDynamicCast