Clang Project

clang_source_code/lib/CodeGen/CodeGenFunction.cpp
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-function state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGBlocks.h"
15#include "CGCleanup.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGOpenMPRuntime.h"
20#include "CodeGenModule.h"
21#include "CodeGenPGO.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ASTLambda.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/AST/StmtObjC.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/CodeGenOptions.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/CodeGen/CGFunctionInfo.h"
33#include "clang/Frontend/FrontendDiagnostic.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/Dominators.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/IR/MDBuilder.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40using namespace clang;
41using namespace CodeGen;
42
43/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44/// markers.
45static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                      const LangOptions &LangOpts) {
47  if (CGOpts.DisableLifetimeMarkers)
48    return false;
49
50  // Disable lifetime markers in msan builds.
51  // FIXME: Remove this when msan works with lifetime markers.
52  if (LangOpts.Sanitize.has(SanitizerKind::Memory))
53    return false;
54
55  // Asan uses markers for use-after-scope checks.
56  if (CGOpts.SanitizeAddressUseAfterScope)
57    return true;
58
59  // For now, only in optimized builds.
60  return CGOpts.OptimizationLevel != 0;
61}
62
63CodeGenFunction::CodeGenFunction(CodeGenModule &cgmbool suppressNewContext)
64    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66              CGBuilderInserterTy(this)),
67      SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68      PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                    CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70  if (!suppressNewContext)
71    CGM.getCXXABI().getMangleContext().startNewFunction();
72
73  llvm::FastMathFlags FMF;
74  if (CGM.getLangOpts().FastMath)
75    FMF.setFast();
76  if (CGM.getLangOpts().FiniteMathOnly) {
77    FMF.setNoNaNs();
78    FMF.setNoInfs();
79  }
80  if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81    FMF.setNoNaNs();
82  }
83  if (CGM.getCodeGenOpts().NoSignedZeros) {
84    FMF.setNoSignedZeros();
85  }
86  if (CGM.getCodeGenOpts().ReciprocalMath) {
87    FMF.setAllowReciprocal();
88  }
89  if (CGM.getCodeGenOpts().Reassociate) {
90    FMF.setAllowReassoc();
91  }
92  Builder.setFastMathFlags(FMF);
93}
94
95CodeGenFunction::~CodeGenFunction() {
96   (0) . __assert_fail ("LifetimeExtendedCleanupStack.empty() && \"failed to emit a cleanup\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 96, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97
98  // If there are any unclaimed block infos, go ahead and destroy them
99  // now.  This can happen if IR-gen gets clever and skips evaluating
100  // something.
101  if (FirstBlockInfo)
102    destroyBlockInfos(FirstBlockInfo);
103
104  if (getLangOpts().OpenMP && CurFn)
105    CGM.getOpenMPRuntime().functionFinished(*this);
106}
107
108CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
109                                                    LValueBaseInfo *BaseInfo,
110                                                    TBAAAccessInfo *TBAAInfo) {
111  return getNaturalTypeAlignment(T->getPointeeType(), BaseInfoTBAAInfo,
112                                 /* forPointeeType= */ true);
113}
114
115CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
116                                                   LValueBaseInfo *BaseInfo,
117                                                   TBAAAccessInfo *TBAAInfo,
118                                                   bool forPointeeType) {
119  if (TBAAInfo)
120    *TBAAInfo = CGM.getTBAAAccessInfo(T);
121
122  // Honor alignment typedef attributes even on incomplete types.
123  // We also honor them straight for C++ class types, even as pointees;
124  // there's an expressivity gap here.
125  if (auto TT = T->getAs<TypedefType>()) {
126    if (auto Align = TT->getDecl()->getMaxAlignment()) {
127      if (BaseInfo)
128        *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
129      return getContext().toCharUnitsFromBits(Align);
130    }
131  }
132
133  if (BaseInfo)
134    *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
135
136  CharUnits Alignment;
137  if (T->isIncompleteType()) {
138    Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
139  } else {
140    // For C++ class pointees, we don't know whether we're pointing at a
141    // base or a complete object, so we generally need to use the
142    // non-virtual alignment.
143    const CXXRecordDecl *RD;
144    if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
145      Alignment = CGM.getClassPointerAlignment(RD);
146    } else {
147      Alignment = getContext().getTypeAlignInChars(T);
148      if (T.getQualifiers().hasUnaligned())
149        Alignment = CharUnits::One();
150    }
151
152    // Cap to the global maximum type alignment unless the alignment
153    // was somehow explicit on the type.
154    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155      if (Alignment.getQuantity() > MaxAlign &&
156          !getContext().isAlignmentRequired(T))
157        Alignment = CharUnits::fromQuantity(MaxAlign);
158    }
159  }
160  return Alignment;
161}
162
163LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *VQualType T) {
164  LValueBaseInfo BaseInfo;
165  TBAAAccessInfo TBAAInfo;
166  CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
167  return LValue::MakeAddr(Address(VAlignment), TgetContext()BaseInfo,
168                          TBAAInfo);
169}
170
171/// Given a value of type T* that may not be to a complete object,
172/// construct an l-value with the natural pointee alignment of T.
173LValue
174CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *VQualType T) {
175  LValueBaseInfo BaseInfo;
176  TBAAAccessInfo TBAAInfo;
177  CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
178                                            /* forPointeeType= */ true);
179  return MakeAddrLValue(Address(VAlign), TBaseInfoTBAAInfo);
180}
181
182
183llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
184  return CGM.getTypes().ConvertTypeForMem(T);
185}
186
187llvm::Type *CodeGenFunction::ConvertType(QualType T) {
188  return CGM.getTypes().ConvertType(T);
189}
190
191TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
192  type = type.getCanonicalType();
193  while (true) {
194    switch (type->getTypeClass()) {
195#define TYPE(name, parent)
196#define ABSTRACT_TYPE(name, parent)
197#define NON_CANONICAL_TYPE(name, parent) case Type::name:
198#define DEPENDENT_TYPE(name, parent) case Type::name:
199#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
200#include "clang/AST/TypeNodes.def"
201      llvm_unreachable("non-canonical or dependent type in IR-generation");
202
203    case Type::Auto:
204    case Type::DeducedTemplateSpecialization:
205      llvm_unreachable("undeduced type in IR-generation");
206
207    // Various scalar types.
208    case Type::Builtin:
209    case Type::Pointer:
210    case Type::BlockPointer:
211    case Type::LValueReference:
212    case Type::RValueReference:
213    case Type::MemberPointer:
214    case Type::Vector:
215    case Type::ExtVector:
216    case Type::FunctionProto:
217    case Type::FunctionNoProto:
218    case Type::Enum:
219    case Type::ObjCObjectPointer:
220    case Type::Pipe:
221      return TEK_Scalar;
222
223    // Complexes.
224    case Type::Complex:
225      return TEK_Complex;
226
227    // Arrays, records, and Objective-C objects.
228    case Type::ConstantArray:
229    case Type::IncompleteArray:
230    case Type::VariableArray:
231    case Type::Record:
232    case Type::ObjCObject:
233    case Type::ObjCInterface:
234      return TEK_Aggregate;
235
236    // We operate on atomic values according to their underlying type.
237    case Type::Atomic:
238      type = cast<AtomicType>(type)->getValueType();
239      continue;
240    }
241    llvm_unreachable("unknown type kind!");
242  }
243}
244
245llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
246  // For cleanliness, we try to avoid emitting the return block for
247  // simple cases.
248  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249
250  if (CurBB) {
251     (0) . __assert_fail ("!CurBB->getTerminator() && \"Unexpected terminated block.\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 251, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!CurBB->getTerminator() && "Unexpected terminated block.");
252
253    // We have a valid insert point, reuse it if it is empty or there are no
254    // explicit jumps to the return block.
255    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
256      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
257      delete ReturnBlock.getBlock();
258    } else
259      EmitBlock(ReturnBlock.getBlock());
260    return llvm::DebugLoc();
261  }
262
263  // Otherwise, if the return block is the target of a single direct
264  // branch then we can just put the code in that block instead. This
265  // cleans up functions which started with a unified return block.
266  if (ReturnBlock.getBlock()->hasOneUse()) {
267    llvm::BranchInst *BI =
268      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
269    if (BI && BI->isUnconditional() &&
270        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
271      // Record/return the DebugLoc of the simple 'return' expression to be used
272      // later by the actual 'ret' instruction.
273      llvm::DebugLoc Loc = BI->getDebugLoc();
274      Builder.SetInsertPoint(BI->getParent());
275      BI->eraseFromParent();
276      delete ReturnBlock.getBlock();
277      return Loc;
278    }
279  }
280
281  // FIXME: We are at an unreachable point, there is no reason to emit the block
282  // unless it has uses. However, we still need a place to put the debug
283  // region.end for now.
284
285  EmitBlock(ReturnBlock.getBlock());
286  return llvm::DebugLoc();
287}
288
289static void EmitIfUsed(CodeGenFunction &CGFllvm::BasicBlock *BB) {
290  if (!BBreturn;
291  if (!BB->use_empty())
292    return CGF.CurFn->getBasicBlockList().push_back(BB);
293  delete BB;
294}
295
296void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
297   (0) . __assert_fail ("BreakContinueStack.empty() && \"mismatched push/pop in break/continue stack!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 298, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(BreakContinueStack.empty() &&
298 (0) . __assert_fail ("BreakContinueStack.empty() && \"mismatched push/pop in break/continue stack!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 298, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "mismatched push/pop in break/continue stack!");
299
300  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
301    && NumSimpleReturnExprs == NumReturnExprs
302    && ReturnBlock.getBlock()->use_empty();
303  // Usually the return expression is evaluated before the cleanup
304  // code.  If the function contains only a simple return statement,
305  // such as a constant, the location before the cleanup code becomes
306  // the last useful breakpoint in the function, because the simple
307  // return expression will be evaluated after the cleanup code. To be
308  // safe, set the debug location for cleanup code to the location of
309  // the return statement.  Otherwise the cleanup code should be at the
310  // end of the function's lexical scope.
311  //
312  // If there are multiple branches to the return block, the branch
313  // instructions will get the location of the return statements and
314  // all will be fine.
315  if (CGDebugInfo *DI = getDebugInfo()) {
316    if (OnlySimpleReturnStmts)
317      DI->EmitLocation(Builder, LastStopPoint);
318    else
319      DI->EmitLocation(Builder, EndLoc);
320  }
321
322  // Pop any cleanups that might have been associated with the
323  // parameters.  Do this in whatever block we're currently in; it's
324  // important to do this before we enter the return block or return
325  // edges will be *really* confused.
326  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
327  bool HasOnlyLifetimeMarkers =
328      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
329  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
330  if (HasCleanups) {
331    // Make sure the line table doesn't jump back into the body for
332    // the ret after it's been at EndLoc.
333    if (CGDebugInfo *DI = getDebugInfo())
334      if (OnlySimpleReturnStmts)
335        DI->EmitLocation(Builder, EndLoc);
336
337    PopCleanupBlocks(PrologueCleanupDepth);
338  }
339
340  // Emit function epilog (to return).
341  llvm::DebugLoc Loc = EmitReturnBlock();
342
343  if (ShouldInstrumentFunction()) {
344    if (CGM.getCodeGenOpts().InstrumentFunctions)
345      CurFn->addFnAttr("instrument-function-exit""__cyg_profile_func_exit");
346    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
347      CurFn->addFnAttr("instrument-function-exit-inlined",
348                       "__cyg_profile_func_exit");
349  }
350
351  // Emit debug descriptor for function end.
352  if (CGDebugInfo *DI = getDebugInfo())
353    DI->EmitFunctionEnd(Builder, CurFn);
354
355  // Reset the debug location to that of the simple 'return' expression, if any
356  // rather than that of the end of the function's scope '}'.
357  ApplyDebugLocation AL(*this, Loc);
358  EmitFunctionEpilog(*CurFnInfoEmitRetDbgLocEndLoc);
359  EmitEndEHSpec(CurCodeDecl);
360
361   (0) . __assert_fail ("EHStack.empty() && \"did not remove all scopes from cleanup stack!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 362, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(EHStack.empty() &&
362 (0) . __assert_fail ("EHStack.empty() && \"did not remove all scopes from cleanup stack!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 362, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "did not remove all scopes from cleanup stack!");
363
364  // If someone did an indirect goto, emit the indirect goto block at the end of
365  // the function.
366  if (IndirectBranch) {
367    EmitBlock(IndirectBranch->getParent());
368    Builder.ClearInsertionPoint();
369  }
370
371  // If some of our locals escaped, insert a call to llvm.localescape in the
372  // entry block.
373  if (!EscapedLocals.empty()) {
374    // Invert the map from local to index into a simple vector. There should be
375    // no holes.
376    SmallVector<llvm::Value *, 4EscapeArgs;
377    EscapeArgs.resize(EscapedLocals.size());
378    for (auto &Pair : EscapedLocals)
379      EscapeArgs[Pair.second] = Pair.first;
380    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
381        &CGM.getModule(), llvm::Intrinsic::localescape);
382    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
383  }
384
385  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
386  llvm::Instruction *Ptr = AllocaInsertPt;
387  AllocaInsertPt = nullptr;
388  Ptr->eraseFromParent();
389
390  // If someone took the address of a label but never did an indirect goto, we
391  // made a zero entry PHI node, which is illegal, zap it now.
392  if (IndirectBranch) {
393    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
394    if (PN->getNumIncomingValues() == 0) {
395      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
396      PN->eraseFromParent();
397    }
398  }
399
400  EmitIfUsed(*thisEHResumeBlock);
401  EmitIfUsed(*thisTerminateLandingPad);
402  EmitIfUsed(*thisTerminateHandler);
403  EmitIfUsed(*thisUnreachableBlock);
404
405  for (const auto &FuncletAndParent : TerminateFunclets)
406    EmitIfUsed(*this, FuncletAndParent.second);
407
408  if (CGM.getCodeGenOpts().EmitDeclMetadata)
409    EmitDeclMetadata();
410
411  for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
412           I = DeferredReplacements.begin(),
413           E = DeferredReplacements.end();
414       I != E; ++I) {
415    I->first->replaceAllUsesWith(I->second);
416    I->first->eraseFromParent();
417  }
418
419  // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
420  // PHIs if the current function is a coroutine. We don't do it for all
421  // functions as it may result in slight increase in numbers of instructions
422  // if compiled with no optimizations. We do it for coroutine as the lifetime
423  // of CleanupDestSlot alloca make correct coroutine frame building very
424  // difficult.
425  if (NormalCleanupDest.isValid() && isCoroutine()) {
426    llvm::DominatorTree DT(*CurFn);
427    llvm::PromoteMemToReg(
428        cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
429    NormalCleanupDest = Address::invalid();
430  }
431
432  // Scan function arguments for vector width.
433  for (llvm::Argument &A : CurFn->args())
434    if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
435      LargestVectorWidth = std::max(LargestVectorWidth,
436                                    VT->getPrimitiveSizeInBits());
437
438  // Update vector width based on return type.
439  if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
440    LargestVectorWidth = std::max(LargestVectorWidth,
441                                  VT->getPrimitiveSizeInBits());
442
443  // Add the required-vector-width attribute. This contains the max width from:
444  // 1. min-vector-width attribute used in the source program.
445  // 2. Any builtins used that have a vector width specified.
446  // 3. Values passed in and out of inline assembly.
447  // 4. Width of vector arguments and return types for this function.
448  // 5. Width of vector aguments and return types for functions called by this
449  //    function.
450  CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
451}
452
453/// ShouldInstrumentFunction - Return true if the current function should be
454/// instrumented with __cyg_profile_func_* calls
455bool CodeGenFunction::ShouldInstrumentFunction() {
456  if (!CGM.getCodeGenOpts().InstrumentFunctions &&
457      !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
458      !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
459    return false;
460  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
461    return false;
462  return true;
463}
464
465/// ShouldXRayInstrument - Return true if the current function should be
466/// instrumented with XRay nop sleds.
467bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
468  return CGM.getCodeGenOpts().XRayInstrumentFunctions;
469}
470
471/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
472/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
473bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
474  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
475         (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
476          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
477              XRayInstrKind::Custom);
478}
479
480bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
481  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
482         (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
483          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
484              XRayInstrKind::Typed);
485}
486
487llvm::Constant *
488CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
489                                            llvm::Constant *Addr) {
490  // Addresses stored in prologue data can't require run-time fixups and must
491  // be PC-relative. Run-time fixups are undesirable because they necessitate
492  // writable text segments, which are unsafe. And absolute addresses are
493  // undesirable because they break PIE mode.
494
495  // Add a layer of indirection through a private global. Taking its address
496  // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
497  auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
498                                      /*isConstant=*/true,
499                                      llvm::GlobalValue::PrivateLinkage, Addr);
500
501  // Create a PC-relative address.
502  auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
503  auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
504  auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
505  return (IntPtrTy == Int32Ty)
506             ? PCRelAsInt
507             : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
508}
509
510llvm::Value *
511CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
512                                          llvm::Value *EncodedAddr) {
513  // Reconstruct the address of the global.
514  auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
515  auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
516  auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
517  auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
518
519  // Load the original pointer through the global.
520  return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
521                            "decoded_addr");
522}
523
524static void removeImageAccessQualifier(std::stringTyName) {
525  std::string ReadOnlyQual("__read_only");
526  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
527  if (ReadOnlyPos != std::string::npos)
528    // "+ 1" for the space after access qualifier.
529    TyName.erase(ReadOnlyPosReadOnlyQual.size() + 1);
530  else {
531    std::string WriteOnlyQual("__write_only");
532    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
533    if (WriteOnlyPos != std::string::npos)
534      TyName.erase(WriteOnlyPosWriteOnlyQual.size() + 1);
535    else {
536      std::string ReadWriteQual("__read_write");
537      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
538      if (ReadWritePos != std::string::npos)
539        TyName.erase(ReadWritePosReadWriteQual.size() + 1);
540    }
541  }
542}
543
544// Returns the address space id that should be produced to the
545// kernel_arg_addr_space metadata. This is always fixed to the ids
546// as specified in the SPIR 2.0 specification in order to differentiate
547// for example in clGetKernelArgInfo() implementation between the address
548// spaces with targets without unique mapping to the OpenCL address spaces
549// (basically all single AS CPUs).
550static unsigned ArgInfoAddressSpace(LangAS AS) {
551  switch (AS) {
552  case LangAS::opencl_global:   return 1;
553  case LangAS::opencl_constantreturn 2;
554  case LangAS::opencl_local:    return 3;
555  case LangAS::opencl_generic:  return 4// Not in SPIR 2.0 specs.
556  default:
557    return 0// Assume private.
558  }
559}
560
561// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
562// information in the program executable. The argument information stored
563// includes the argument name, its type, the address and access qualifiers used.
564static void GenOpenCLArgMetadata(const FunctionDecl *FDllvm::Function *Fn,
565                                 CodeGenModule &CGMllvm::LLVMContext &Context,
566                                 CGBuilderTy &BuilderASTContext &ASTCtx) {
567  // Create MDNodes that represent the kernel arg metadata.
568  // Each MDNode is a list in the form of "key", N number of values which is
569  // the same number of values as their are kernel arguments.
570
571  const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
572
573  // MDNode for the kernel argument address space qualifiers.
574  SmallVector<llvm::Metadata *, 8addressQuals;
575
576  // MDNode for the kernel argument access qualifiers (images only).
577  SmallVector<llvm::Metadata *, 8accessQuals;
578
579  // MDNode for the kernel argument type names.
580  SmallVector<llvm::Metadata *, 8argTypeNames;
581
582  // MDNode for the kernel argument base type names.
583  SmallVector<llvm::Metadata *, 8argBaseTypeNames;
584
585  // MDNode for the kernel argument type qualifiers.
586  SmallVector<llvm::Metadata *, 8argTypeQuals;
587
588  // MDNode for the kernel argument names.
589  SmallVector<llvm::Metadata *, 8argNames;
590
591  for (unsigned i = 0e = FD->getNumParams(); i != e; ++i) {
592    const ParmVarDecl *parm = FD->getParamDecl(i);
593    QualType ty = parm->getType();
594    std::string typeQuals;
595
596    if (ty->isPointerType()) {
597      QualType pointeeTy = ty->getPointeeType();
598
599      // Get address qualifier.
600      addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
601        ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
602
603      // Get argument type name.
604      std::string typeName =
605          pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
606
607      // Turn "unsigned type" to "utype"
608      std::string::size_type pos = typeName.find("unsigned");
609      if (pointeeTy.isCanonical() && pos != std::string::npos)
610        typeName.erase(pos+18);
611
612      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
613
614      std::string baseTypeName =
615          pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
616              Policy) +
617          "*";
618
619      // Turn "unsigned type" to "utype"
620      pos = baseTypeName.find("unsigned");
621      if (pos != std::string::npos)
622        baseTypeName.erase(pos+18);
623
624      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
625
626      // Get argument type qualifiers:
627      if (ty.isRestrictQualified())
628        typeQuals = "restrict";
629      if (pointeeTy.isConstQualified() ||
630          (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
631        typeQuals += typeQuals.empty() ? "const" : " const";
632      if (pointeeTy.isVolatileQualified())
633        typeQuals += typeQuals.empty() ? "volatile" : " volatile";
634    } else {
635      uint32_t AddrSpc = 0;
636      bool isPipe = ty->isPipeType();
637      if (ty->isImageType() || isPipe)
638        AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
639
640      addressQuals.push_back(
641          llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
642
643      // Get argument type name.
644      std::string typeName;
645      if (isPipe)
646        typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
647                     .getAsString(Policy);
648      else
649        typeName = ty.getUnqualifiedType().getAsString(Policy);
650
651      // Turn "unsigned type" to "utype"
652      std::string::size_type pos = typeName.find("unsigned");
653      if (ty.isCanonical() && pos != std::string::npos)
654        typeName.erase(pos+18);
655
656      std::string baseTypeName;
657      if (isPipe)
658        baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
659                          ->getElementType().getCanonicalType()
660                          .getAsString(Policy);
661      else
662        baseTypeName =
663          ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
664
665      // Remove access qualifiers on images
666      // (as they are inseparable from type in clang implementation,
667      // but OpenCL spec provides a special query to get access qualifier
668      // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
669      if (ty->isImageType()) {
670        removeImageAccessQualifier(typeName);
671        removeImageAccessQualifier(baseTypeName);
672      }
673
674      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
675
676      // Turn "unsigned type" to "utype"
677      pos = baseTypeName.find("unsigned");
678      if (pos != std::string::npos)
679        baseTypeName.erase(pos+18);
680
681      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
682
683      if (isPipe)
684        typeQuals = "pipe";
685    }
686
687    argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
688
689    // Get image and pipe access qualifier:
690    if (ty->isImageType()|| ty->isPipeType()) {
691      const Decl *PDecl = parm;
692      if (auto *TD = dyn_cast<TypedefType>(ty))
693        PDecl = TD->getDecl();
694      const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
695      if (A && A->isWriteOnly())
696        accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
697      else if (A && A->isReadWrite())
698        accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
699      else
700        accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
701    } else
702      accessQuals.push_back(llvm::MDString::get(Context, "none"));
703
704    // Get argument name.
705    argNames.push_back(llvm::MDString::get(Context, parm->getName()));
706  }
707
708  Fn->setMetadata("kernel_arg_addr_space",
709                  llvm::MDNode::get(Context, addressQuals));
710  Fn->setMetadata("kernel_arg_access_qual",
711                  llvm::MDNode::get(Context, accessQuals));
712  Fn->setMetadata("kernel_arg_type",
713                  llvm::MDNode::get(Context, argTypeNames));
714  Fn->setMetadata("kernel_arg_base_type",
715                  llvm::MDNode::get(Context, argBaseTypeNames));
716  Fn->setMetadata("kernel_arg_type_qual",
717                  llvm::MDNode::get(Context, argTypeQuals));
718  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
719    Fn->setMetadata("kernel_arg_name",
720                    llvm::MDNode::get(Context, argNames));
721}
722
723void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
724                                               llvm::Function *Fn)
725{
726  if (!FD->hasAttr<OpenCLKernelAttr>())
727    return;
728
729  llvm::LLVMContext &Context = getLLVMContext();
730
731  GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
732
733  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
734    QualType HintQTy = A->getTypeHint();
735    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
736    bool IsSignedInteger =
737        HintQTy->isSignedIntegerType() ||
738        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
739    llvm::Metadata *AttrMDArgs[] = {
740        llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
741            CGM.getTypes().ConvertType(A->getTypeHint()))),
742        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
743            llvm::IntegerType::get(Context, 32),
744            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
745    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
746  }
747
748  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
749    llvm::Metadata *AttrMDArgs[] = {
750        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
751        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
752        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
753    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
754  }
755
756  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
757    llvm::Metadata *AttrMDArgs[] = {
758        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
759        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
760        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
761    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
762  }
763
764  if (const OpenCLIntelReqdSubGroupSizeAttr *A =
765          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
766    llvm::Metadata *AttrMDArgs[] = {
767        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
768    Fn->setMetadata("intel_reqd_sub_group_size",
769                    llvm::MDNode::get(Context, AttrMDArgs));
770  }
771}
772
773/// Determine whether the function F ends with a return stmt.
774static bool endsWithReturn(const DeclF) {
775  const Stmt *Body = nullptr;
776  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
777    Body = FD->getBody();
778  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
779    Body = OMD->getBody();
780
781  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
782    auto LastStmt = CS->body_rbegin();
783    if (LastStmt != CS->body_rend())
784      return isa<ReturnStmt>(*LastStmt);
785  }
786  return false;
787}
788
789void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
790  if (SanOpts.has(SanitizerKind::Thread)) {
791    Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
792    Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
793  }
794}
795
796static bool matchesStlAllocatorFn(const Decl *Dconst ASTContext &Ctx) {
797  auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
798  if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
799      !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
800      (MD->getNumParams() != 1 && MD->getNumParams() != 2))
801    return false;
802
803  if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
804    return false;
805
806  if (MD->getNumParams() == 2) {
807    auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
808    if (!PT || !PT->isVoidPointerType() ||
809        !PT->getPointeeType().isConstQualified())
810      return false;
811  }
812
813  return true;
814}
815
816/// Return the UBSan prologue signature for \p FD if one is available.
817static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
818                                            const FunctionDecl *FD) {
819  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
820    if (!MD->isStatic())
821      return nullptr;
822  return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
823}
824
825void CodeGenFunction::StartFunction(GlobalDecl GD,
826                                    QualType RetTy,
827                                    llvm::Function *Fn,
828                                    const CGFunctionInfo &FnInfo,
829                                    const FunctionArgList &Args,
830                                    SourceLocation Loc,
831                                    SourceLocation StartLoc) {
832   (0) . __assert_fail ("!CurFn && \"Do not use a CodeGenFunction object for more than one function\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 833, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!CurFn &&
833 (0) . __assert_fail ("!CurFn && \"Do not use a CodeGenFunction object for more than one function\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 833, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Do not use a CodeGenFunction object for more than one function");
834
835  const Decl *D = GD.getDecl();
836
837  DidCallStackSave = false;
838  CurCodeDecl = D;
839  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
840    if (FD->usesSEHTry())
841      CurSEHParent = FD;
842  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
843  FnRetTy = RetTy;
844  CurFn = Fn;
845  CurFnInfo = &FnInfo;
846   (0) . __assert_fail ("CurFn->isDeclaration() && \"Function already has body?\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 846, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(CurFn->isDeclaration() && "Function already has body?");
847
848  // If this function has been blacklisted for any of the enabled sanitizers,
849  // disable the sanitizer for the function.
850  do {
851#define SANITIZER(NAME, ID)                                                    \
852  if (SanOpts.empty())                                                         \
853    break;                                                                     \
854  if (SanOpts.has(SanitizerKind::ID))                                          \
855    if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
856      SanOpts.set(SanitizerKind::ID, false);
857
858#include "clang/Basic/Sanitizers.def"
859#undef SANITIZER
860  } while (0);
861
862  if (D) {
863    // Apply the no_sanitize* attributes to SanOpts.
864    for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
865      SanitizerMask mask = Attr->getMask();
866      SanOpts.Mask &= ~mask;
867      if (mask & SanitizerKind::Address)
868        SanOpts.set(SanitizerKind::KernelAddress, false);
869      if (mask & SanitizerKind::KernelAddress)
870        SanOpts.set(SanitizerKind::Address, false);
871      if (mask & SanitizerKind::HWAddress)
872        SanOpts.set(SanitizerKind::KernelHWAddress, false);
873      if (mask & SanitizerKind::KernelHWAddress)
874        SanOpts.set(SanitizerKind::HWAddress, false);
875    }
876  }
877
878  // Apply sanitizer attributes to the function.
879  if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
880    Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
881  if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
882    Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
883  if (SanOpts.has(SanitizerKind::Thread))
884    Fn->addFnAttr(llvm::Attribute::SanitizeThread);
885  if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
886    Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
887  if (SanOpts.has(SanitizerKind::SafeStack))
888    Fn->addFnAttr(llvm::Attribute::SafeStack);
889  if (SanOpts.has(SanitizerKind::ShadowCallStack))
890    Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
891
892  // Apply fuzzing attribute to the function.
893  if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
894    Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
895
896  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
897  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
898  if (SanOpts.has(SanitizerKind::Thread)) {
899    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
900      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
901      if (OMD->getMethodFamily() == OMF_dealloc ||
902          OMD->getMethodFamily() == OMF_initialize ||
903          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
904        markAsIgnoreThreadCheckingAtRuntime(Fn);
905      }
906    }
907  }
908
909  // Ignore unrelated casts in STL allocate() since the allocator must cast
910  // from void* to T* before object initialization completes. Don't match on the
911  // namespace because not all allocators are in std::
912  if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
913    if (matchesStlAllocatorFn(DgetContext()))
914      SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
915  }
916
917  // Apply xray attributes to the function (as a string, for now)
918  if (D) {
919    if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
920      if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
921              XRayInstrKind::Function)) {
922        if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
923          Fn->addFnAttr("function-instrument""xray-always");
924        if (XRayAttr->neverXRayInstrument())
925          Fn->addFnAttr("function-instrument""xray-never");
926        if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
927          if (ShouldXRayInstrumentFunction())
928            Fn->addFnAttr("xray-log-args",
929                          llvm::utostr(LogArgs->getArgumentCount()));
930      }
931    } else {
932      if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
933        Fn->addFnAttr(
934            "xray-instruction-threshold",
935            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
936    }
937  }
938
939  // Add no-jump-tables value.
940  Fn->addFnAttr("no-jump-tables",
941                llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
942
943  // Add profile-sample-accurate value.
944  if (CGM.getCodeGenOpts().ProfileSampleAccurate)
945    Fn->addFnAttr("profile-sample-accurate");
946
947  if (getLangOpts().OpenCL) {
948    // Add metadata for a kernel function.
949    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
950      EmitOpenCLKernelMetadata(FDFn);
951  }
952
953  // If we are checking function types, emit a function type signature as
954  // prologue data.
955  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
956    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
957      if (llvm::Constant *PrologueSig = getPrologueSignature(CGMFD)) {
958        // Remove any (C++17) exception specifications, to allow calling e.g. a
959        // noexcept function through a non-noexcept pointer.
960        auto ProtoTy =
961          getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
962                                                        EST_None);
963        llvm::Constant *FTRTTIConst =
964            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
965        llvm::Constant *FTRTTIConstEncoded =
966            EncodeAddrForUseInPrologue(FnFTRTTIConst);
967        llvm::Constant *PrologueStructElems[] = {PrologueSig,
968                                                 FTRTTIConstEncoded};
969        llvm::Constant *PrologueStructConst =
970            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
971        Fn->setPrologueData(PrologueStructConst);
972      }
973    }
974  }
975
976  // If we're checking nullability, we need to know whether we can check the
977  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
978  if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
979    auto Nullability = FnRetTy->getNullability(getContext());
980    if (Nullability && *Nullability == NullabilityKind::NonNull) {
981      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
982            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
983        RetValNullabilityPrecondition =
984            llvm::ConstantInt::getTrue(getLLVMContext());
985    }
986  }
987
988  // If we're in C++ mode and the function name is "main", it is guaranteed
989  // to be norecurse by the standard (3.6.1.3 "The function main shall not be
990  // used within a program").
991  if (getLangOpts().CPlusPlus)
992    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
993      if (FD->isMain())
994        Fn->addFnAttr(llvm::Attribute::NoRecurse);
995
996  // If a custom alignment is used, force realigning to this alignment on
997  // any main function which certainly will need it.
998  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
999    if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1000        CGM.getCodeGenOpts().StackAlignment)
1001      Fn->addFnAttr("stackrealign");
1002
1003  llvm::BasicBlock *EntryBB = createBasicBlock("entry"CurFn);
1004
1005  // Create a marker to make it easy to insert allocas into the entryblock
1006  // later.  Don't create this with the builder, because we don't want it
1007  // folded.
1008  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1009  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1010
1011  ReturnBlock = getJumpDestInCurrentScope("return");
1012
1013  Builder.SetInsertPoint(EntryBB);
1014
1015  // If we're checking the return value, allocate space for a pointer to a
1016  // precise source location of the checked return statement.
1017  if (requiresReturnValueCheck()) {
1018    ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1019    InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1020  }
1021
1022  // Emit subprogram debug descriptor.
1023  if (CGDebugInfo *DI = getDebugInfo()) {
1024    // Reconstruct the type from the argument list so that implicit parameters,
1025    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1026    // convention.
1027    CallingConv CC = CallingConv::CC_C;
1028    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1029      if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1030        CC = SrcFnTy->getCallConv();
1031    SmallVector<QualType16ArgTypes;
1032    for (const VarDecl *VD : Args)
1033      ArgTypes.push_back(VD->getType());
1034    QualType FnType = getContext().getFunctionType(
1035        RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1036    DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1037                          Builder);
1038  }
1039
1040  if (ShouldInstrumentFunction()) {
1041    if (CGM.getCodeGenOpts().InstrumentFunctions)
1042      CurFn->addFnAttr("instrument-function-entry""__cyg_profile_func_enter");
1043    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1044      CurFn->addFnAttr("instrument-function-entry-inlined",
1045                       "__cyg_profile_func_enter");
1046    if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1047      CurFn->addFnAttr("instrument-function-entry-inlined",
1048                       "__cyg_profile_func_enter_bare");
1049  }
1050
1051  // Since emitting the mcount call here impacts optimizations such as function
1052  // inlining, we just add an attribute to insert a mcount call in backend.
1053  // The attribute "counting-function" is set to mcount function name which is
1054  // architecture dependent.
1055  if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1056    // Calls to fentry/mcount should not be generated if function has
1057    // the no_instrument_function attribute.
1058    if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1059      if (CGM.getCodeGenOpts().CallFEntry)
1060        Fn->addFnAttr("fentry-call""true");
1061      else {
1062        Fn->addFnAttr("instrument-function-entry-inlined",
1063                      getTarget().getMCountName());
1064      }
1065    }
1066  }
1067
1068  if (RetTy->isVoidType()) {
1069    // Void type; nothing to return.
1070    ReturnValue = Address::invalid();
1071
1072    // Count the implicit return.
1073    if (!endsWithReturn(D))
1074      ++NumReturnExprs;
1075  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1076    // Indirect return; emit returned value directly into sret slot.
1077    // This reduces code size, and affects correctness in C++.
1078    auto AI = CurFn->arg_begin();
1079    if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1080      ++AI;
1081    ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1082  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1083             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1084    // Load the sret pointer from the argument struct and return into that.
1085    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1086    llvm::Function::arg_iterator EI = CurFn->arg_end();
1087    --EI;
1088    llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1089    Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1090    ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1091  } else {
1092    ReturnValue = CreateIRTemp(RetTy, "retval");
1093
1094    // Tell the epilog emitter to autorelease the result.  We do this
1095    // now so that various specialized functions can suppress it
1096    // during their IR-generation.
1097    if (getLangOpts().ObjCAutoRefCount &&
1098        !CurFnInfo->isReturnsRetained() &&
1099        RetTy->isObjCRetainableType())
1100      AutoreleaseResult = true;
1101  }
1102
1103  EmitStartEHSpec(CurCodeDecl);
1104
1105  PrologueCleanupDepth = EHStack.stable_begin();
1106
1107  // Emit OpenMP specific initialization of the device functions.
1108  if (getLangOpts().OpenMP && CurCodeDecl)
1109    CGM.getOpenMPRuntime().emitFunctionProlog(*thisCurCodeDecl);
1110
1111  EmitFunctionProlog(*CurFnInfoCurFnArgs);
1112
1113  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1114    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1115    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1116    if (MD->getParent()->isLambda() &&
1117        MD->getOverloadedOperator() == OO_Call) {
1118      // We're in a lambda; figure out the captures.
1119      MD->getParent()->getCaptureFields(LambdaCaptureFields,
1120                                        LambdaThisCaptureField);
1121      if (LambdaThisCaptureField) {
1122        // If the lambda captures the object referred to by '*this' - either by
1123        // value or by reference, make sure CXXThisValue points to the correct
1124        // object.
1125
1126        // Get the lvalue for the field (which is a copy of the enclosing object
1127        // or contains the address of the enclosing object).
1128        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1129        if (!LambdaThisCaptureField->getType()->isPointerType()) {
1130          // If the enclosing object was captured by value, just use its address.
1131          CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1132        } else {
1133          // Load the lvalue pointed to by the field, since '*this' was captured
1134          // by reference.
1135          CXXThisValue =
1136              EmitLoadOfLValue(ThisFieldLValueSourceLocation()).getScalarVal();
1137        }
1138      }
1139      for (auto *FD : MD->getParent()->fields()) {
1140        if (FD->hasCapturedVLAType()) {
1141          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1142                                           SourceLocation()).getScalarVal();
1143          auto VAT = FD->getCapturedVLAType();
1144          VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1145        }
1146      }
1147    } else {
1148      // Not in a lambda; just use 'this' from the method.
1149      // FIXME: Should we generate a new load for each use of 'this'?  The
1150      // fast register allocator would be happier...
1151      CXXThisValue = CXXABIThisValue;
1152    }
1153
1154    // Check the 'this' pointer once per function, if it's available.
1155    if (CXXABIThisValue) {
1156      SanitizerSet SkippedChecks;
1157      SkippedChecks.set(SanitizerKind::ObjectSizetrue);
1158      QualType ThisTy = MD->getThisType();
1159
1160      // If this is the call operator of a lambda with no capture-default, it
1161      // may have a static invoker function, which may call this operator with
1162      // a null 'this' pointer.
1163      if (isLambdaCallOperator(MD) &&
1164          MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1165        SkippedChecks.set(SanitizerKind::Nulltrue);
1166
1167      EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1168                                                : TCK_MemberCall,
1169                    LocCXXABIThisValueThisTy,
1170                    getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1171                    SkippedChecks);
1172    }
1173  }
1174
1175  // If any of the arguments have a variably modified type, make sure to
1176  // emit the type size.
1177  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1178       i != e; ++i) {
1179    const VarDecl *VD = *i;
1180
1181    // Dig out the type as written from ParmVarDecls; it's unclear whether
1182    // the standard (C99 6.9.1p10) requires this, but we're following the
1183    // precedent set by gcc.
1184    QualType Ty;
1185    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1186      Ty = PVD->getOriginalType();
1187    else
1188      Ty = VD->getType();
1189
1190    if (Ty->isVariablyModifiedType())
1191      EmitVariablyModifiedType(Ty);
1192  }
1193  // Emit a location at the end of the prologue.
1194  if (CGDebugInfo *DI = getDebugInfo())
1195    DI->EmitLocation(Builder, StartLoc);
1196
1197  // TODO: Do we need to handle this in two places like we do with
1198  // target-features/target-cpu?
1199  if (CurFuncDecl)
1200    if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1201      LargestVectorWidth = VecWidth->getVectorWidth();
1202}
1203
1204void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1205  incrementProfileCounter(Body);
1206  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1207    EmitCompoundStmtWithoutScope(*S);
1208  else
1209    EmitStmt(Body);
1210}
1211
1212/// When instrumenting to collect profile data, the counts for some blocks
1213/// such as switch cases need to not include the fall-through counts, so
1214/// emit a branch around the instrumentation code. When not instrumenting,
1215/// this just calls EmitBlock().
1216void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1217                                               const Stmt *S) {
1218  llvm::BasicBlock *SkipCountBB = nullptr;
1219  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1220    // When instrumenting for profiling, the fallthrough to certain
1221    // statements needs to skip over the instrumentation code so that we
1222    // get an accurate count.
1223    SkipCountBB = createBasicBlock("skipcount");
1224    EmitBranch(SkipCountBB);
1225  }
1226  EmitBlock(BB);
1227  uint64_t CurrentCount = getCurrentProfileCount();
1228  incrementProfileCounter(S);
1229  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1230  if (SkipCountBB)
1231    EmitBlock(SkipCountBB);
1232}
1233
1234/// Tries to mark the given function nounwind based on the
1235/// non-existence of any throwing calls within it.  We believe this is
1236/// lightweight enough to do at -O0.
1237static void TryMarkNoThrow(llvm::Function *F) {
1238  // LLVM treats 'nounwind' on a function as part of the type, so we
1239  // can't do this on functions that can be overwritten.
1240  if (F->isInterposable()) return;
1241
1242  for (llvm::BasicBlock &BB : *F)
1243    for (llvm::Instruction &I : BB)
1244      if (I.mayThrow())
1245        return;
1246
1247  F->setDoesNotThrow();
1248}
1249
1250QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1251                                               FunctionArgList &Args) {
1252  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1253  QualType ResTy = FD->getReturnType();
1254
1255  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1256  if (MD && MD->isInstance()) {
1257    if (CGM.getCXXABI().HasThisReturn(GD))
1258      ResTy = MD->getThisType();
1259    else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1260      ResTy = CGM.getContext().VoidPtrTy;
1261    CGM.getCXXABI().buildThisParam(*thisArgs);
1262  }
1263
1264  // The base version of an inheriting constructor whose constructed base is a
1265  // virtual base is not passed any arguments (because it doesn't actually call
1266  // the inherited constructor).
1267  bool PassedParams = true;
1268  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1269    if (auto Inherited = CD->getInheritedConstructor())
1270      PassedParams =
1271          getTypes().inheritingCtorHasParams(InheritedGD.getCtorType());
1272
1273  if (PassedParams) {
1274    for (auto *Param : FD->parameters()) {
1275      Args.push_back(Param);
1276      if (!Param->hasAttr<PassObjectSizeAttr>())
1277        continue;
1278
1279      auto *Implicit = ImplicitParamDecl::Create(
1280          getContext(), Param->getDeclContext(), Param->getLocation(),
1281          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1282      SizeArguments[Param] = Implicit;
1283      Args.push_back(Implicit);
1284    }
1285  }
1286
1287  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1288    CGM.getCXXABI().addImplicitStructorParams(*thisResTyArgs);
1289
1290  return ResTy;
1291}
1292
1293static bool
1294shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1295                                             const ASTContext &Context) {
1296  QualType T = FD->getReturnType();
1297  // Avoid the optimization for functions that return a record type with a
1298  // trivial destructor or another trivially copyable type.
1299  if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1300    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1301      return !ClassDecl->hasTrivialDestructor();
1302  }
1303  return !T.isTriviallyCopyableType(Context);
1304}
1305
1306void CodeGenFunction::GenerateCode(GlobalDecl GDllvm::Function *Fn,
1307                                   const CGFunctionInfo &FnInfo) {
1308  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1309  CurGD = GD;
1310
1311  FunctionArgList Args;
1312  QualType ResTy = BuildFunctionArgList(GDArgs);
1313
1314  // Check if we should generate debug info for this function.
1315  if (FD->hasAttr<NoDebugAttr>())
1316    DebugInfo = nullptr// disable debug info indefinitely for this function
1317
1318  // The function might not have a body if we're generating thunks for a
1319  // function declaration.
1320  SourceRange BodyRange;
1321  if (Stmt *Body = FD->getBody())
1322    BodyRange = Body->getSourceRange();
1323  else
1324    BodyRange = FD->getLocation();
1325  CurEHLocation = BodyRange.getEnd();
1326
1327  // Use the location of the start of the function to determine where
1328  // the function definition is located. By default use the location
1329  // of the declaration as the location for the subprogram. A function
1330  // may lack a declaration in the source code if it is created by code
1331  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1332  SourceLocation Loc = FD->getLocation();
1333
1334  // If this is a function specialization then use the pattern body
1335  // as the location for the function.
1336  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1337    if (SpecDecl->hasBody(SpecDecl))
1338      Loc = SpecDecl->getLocation();
1339
1340  Stmt *Body = FD->getBody();
1341
1342  // Initialize helper which will detect jumps which can cause invalid lifetime
1343  // markers.
1344  if (Body && ShouldEmitLifetimeMarkers)
1345    Bypasses.Init(Body);
1346
1347  // Emit the standard function prologue.
1348  StartFunction(GDResTyFnFnInfoArgsLocBodyRange.getBegin());
1349
1350  // Generate the body of the function.
1351  PGO.assignRegionCounters(GD, CurFn);
1352  if (isa<CXXDestructorDecl>(FD))
1353    EmitDestructorBody(Args);
1354  else if (isa<CXXConstructorDecl>(FD))
1355    EmitConstructorBody(Args);
1356  else if (getLangOpts().CUDA &&
1357           !getLangOpts().CUDAIsDevice &&
1358           FD->hasAttr<CUDAGlobalAttr>())
1359    CGM.getCUDARuntime().emitDeviceStub(*thisArgs);
1360  else if (isa<CXXMethodDecl>(FD) &&
1361           cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1362    // The lambda static invoker function is special, because it forwards or
1363    // clones the body of the function call operator (but is actually static).
1364    EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1365  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1366             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1367              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1368    // Implicit copy-assignment gets the same special treatment as implicit
1369    // copy-constructors.
1370    emitImplicitAssignmentOperatorBody(Args);
1371  } else if (Body) {
1372    EmitFunctionBody(Body);
1373  } else
1374    llvm_unreachable("no definition for emitted function");
1375
1376  // C++11 [stmt.return]p2:
1377  //   Flowing off the end of a function [...] results in undefined behavior in
1378  //   a value-returning function.
1379  // C11 6.9.1p12:
1380  //   If the '}' that terminates a function is reached, and the value of the
1381  //   function call is used by the caller, the behavior is undefined.
1382  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1383      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1384    bool ShouldEmitUnreachable =
1385        CGM.getCodeGenOpts().StrictReturn ||
1386        shouldUseUndefinedBehaviorReturnOptimization(FDgetContext());
1387    if (SanOpts.has(SanitizerKind::Return)) {
1388      SanitizerScope SanScope(this);
1389      llvm::Value *IsFalse = Builder.getFalse();
1390      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1391                SanitizerHandler::MissingReturn,
1392                EmitCheckSourceLocation(FD->getLocation()), None);
1393    } else if (ShouldEmitUnreachable) {
1394      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1395        EmitTrapCall(llvm::Intrinsic::trap);
1396    }
1397    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1398      Builder.CreateUnreachable();
1399      Builder.ClearInsertionPoint();
1400    }
1401  }
1402
1403  // Emit the standard function epilogue.
1404  FinishFunction(BodyRange.getEnd());
1405
1406  // If we haven't marked the function nothrow through other means, do
1407  // a quick pass now to see if we can.
1408  if (!CurFn->doesNotThrow())
1409    TryMarkNoThrow(CurFn);
1410}
1411
1412/// ContainsLabel - Return true if the statement contains a label in it.  If
1413/// this statement is not executed normally, it not containing a label means
1414/// that we can just remove the code.
1415bool CodeGenFunction::ContainsLabel(const Stmt *Sbool IgnoreCaseStmts) {
1416  // Null statement, not a label!
1417  if (!Sreturn false;
1418
1419  // If this is a label, we have to emit the code, consider something like:
1420  // if (0) {  ...  foo:  bar(); }  goto foo;
1421  //
1422  // TODO: If anyone cared, we could track __label__'s, since we know that you
1423  // can't jump to one from outside their declared region.
1424  if (isa<LabelStmt>(S))
1425    return true;
1426
1427  // If this is a case/default statement, and we haven't seen a switch, we have
1428  // to emit the code.
1429  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1430    return true;
1431
1432  // If this is a switch statement, we want to ignore cases below it.
1433  if (isa<SwitchStmt>(S))
1434    IgnoreCaseStmts = true;
1435
1436  // Scan subexpressions for verboten labels.
1437  for (const Stmt *SubStmt : S->children())
1438    if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1439      return true;
1440
1441  return false;
1442}
1443
1444/// containsBreak - Return true if the statement contains a break out of it.
1445/// If the statement (recursively) contains a switch or loop with a break
1446/// inside of it, this is fine.
1447bool CodeGenFunction::containsBreak(const Stmt *S) {
1448  // Null statement, not a label!
1449  if (!Sreturn false;
1450
1451  // If this is a switch or loop that defines its own break scope, then we can
1452  // include it and anything inside of it.
1453  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1454      isa<ForStmt>(S))
1455    return false;
1456
1457  if (isa<BreakStmt>(S))
1458    return true;
1459
1460  // Scan subexpressions for verboten breaks.
1461  for (const Stmt *SubStmt : S->children())
1462    if (containsBreak(SubStmt))
1463      return true;
1464
1465  return false;
1466}
1467
1468bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1469  if (!Sreturn false;
1470
1471  // Some statement kinds add a scope and thus never add a decl to the current
1472  // scope. Note, this list is longer than the list of statements that might
1473  // have an unscoped decl nested within them, but this way is conservatively
1474  // correct even if more statement kinds are added.
1475  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1476      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1477      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1478      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1479    return false;
1480
1481  if (isa<DeclStmt>(S))
1482    return true;
1483
1484  for (const Stmt *SubStmt : S->children())
1485    if (mightAddDeclToScope(SubStmt))
1486      return true;
1487
1488  return false;
1489}
1490
1491/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1492/// to a constant, or if it does but contains a label, return false.  If it
1493/// constant folds return true and set the boolean result in Result.
1494bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1495                                                   bool &ResultBool,
1496                                                   bool AllowLabels) {
1497  llvm::APSInt ResultInt;
1498  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1499    return false;
1500
1501  ResultBool = ResultInt.getBoolValue();
1502  return true;
1503}
1504
1505/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1506/// to a constant, or if it does but contains a label, return false.  If it
1507/// constant folds return true and set the folded value.
1508bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1509                                                   llvm::APSInt &ResultInt,
1510                                                   bool AllowLabels) {
1511  // FIXME: Rename and handle conversion of other evaluatable things
1512  // to bool.
1513  Expr::EvalResult Result;
1514  if (!Cond->EvaluateAsInt(ResultgetContext()))
1515    return false;  // Not foldable, not integer or not fully evaluatable.
1516
1517  llvm::APSInt Int = Result.Val.getInt();
1518  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1519    return false;  // Contains a label.
1520
1521  ResultInt = Int;
1522  return true;
1523}
1524
1525
1526
1527/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1528/// statement) to the specified blocks.  Based on the condition, this might try
1529/// to simplify the codegen of the conditional based on the branch.
1530///
1531void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1532                                           llvm::BasicBlock *TrueBlock,
1533                                           llvm::BasicBlock *FalseBlock,
1534                                           uint64_t TrueCount) {
1535  Cond = Cond->IgnoreParens();
1536
1537  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1538
1539    // Handle X && Y in a condition.
1540    if (CondBOp->getOpcode() == BO_LAnd) {
1541      // If we have "1 && X", simplify the code.  "0 && X" would have constant
1542      // folded if the case was simple enough.
1543      bool ConstantBool = false;
1544      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1545          ConstantBool) {
1546        // br(1 && X) -> br(X).
1547        incrementProfileCounter(CondBOp);
1548        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlockFalseBlock,
1549                                    TrueCount);
1550      }
1551
1552      // If we have "X && 1", simplify the code to use an uncond branch.
1553      // "X && 0" would have been constant folded to 0.
1554      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1555          ConstantBool) {
1556        // br(X && 1) -> br(X).
1557        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlockFalseBlock,
1558                                    TrueCount);
1559      }
1560
1561      // Emit the LHS as a conditional.  If the LHS conditional is false, we
1562      // want to jump to the FalseBlock.
1563      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1564      // The counter tells us how often we evaluate RHS, and all of TrueCount
1565      // can be propagated to that branch.
1566      uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1567
1568      ConditionalEvaluation eval(*this);
1569      {
1570        ApplyDebugLocation DL(*thisCond);
1571        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrueFalseBlockRHSCount);
1572        EmitBlock(LHSTrue);
1573      }
1574
1575      incrementProfileCounter(CondBOp);
1576      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1577
1578      // Any temporaries created here are conditional.
1579      eval.begin(*this);
1580      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlockFalseBlockTrueCount);
1581      eval.end(*this);
1582
1583      return;
1584    }
1585
1586    if (CondBOp->getOpcode() == BO_LOr) {
1587      // If we have "0 || X", simplify the code.  "1 || X" would have constant
1588      // folded if the case was simple enough.
1589      bool ConstantBool = false;
1590      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1591          !ConstantBool) {
1592        // br(0 || X) -> br(X).
1593        incrementProfileCounter(CondBOp);
1594        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlockFalseBlock,
1595                                    TrueCount);
1596      }
1597
1598      // If we have "X || 0", simplify the code to use an uncond branch.
1599      // "X || 1" would have been constant folded to 1.
1600      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1601          !ConstantBool) {
1602        // br(X || 0) -> br(X).
1603        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlockFalseBlock,
1604                                    TrueCount);
1605      }
1606
1607      // Emit the LHS as a conditional.  If the LHS conditional is true, we
1608      // want to jump to the TrueBlock.
1609      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1610      // We have the count for entry to the RHS and for the whole expression
1611      // being true, so we can divy up True count between the short circuit and
1612      // the RHS.
1613      uint64_t LHSCount =
1614          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1615      uint64_t RHSCount = TrueCount - LHSCount;
1616
1617      ConditionalEvaluation eval(*this);
1618      {
1619        ApplyDebugLocation DL(*thisCond);
1620        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlockLHSFalseLHSCount);
1621        EmitBlock(LHSFalse);
1622      }
1623
1624      incrementProfileCounter(CondBOp);
1625      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1626
1627      // Any temporaries created here are conditional.
1628      eval.begin(*this);
1629      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlockFalseBlockRHSCount);
1630
1631      eval.end(*this);
1632
1633      return;
1634    }
1635  }
1636
1637  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1638    // br(!x, t, f) -> br(x, f, t)
1639    if (CondUOp->getOpcode() == UO_LNot) {
1640      // Negate the count.
1641      uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1642      // Negate the condition and swap the destination blocks.
1643      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlockTrueBlock,
1644                                  FalseCount);
1645    }
1646  }
1647
1648  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1649    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1650    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1651    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1652
1653    ConditionalEvaluation cond(*this);
1654    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlockRHSBlock,
1655                         getProfileCount(CondOp));
1656
1657    // When computing PGO branch weights, we only know the overall count for
1658    // the true block. This code is essentially doing tail duplication of the
1659    // naive code-gen, introducing new edges for which counts are not
1660    // available. Divide the counts proportionally between the LHS and RHS of
1661    // the conditional operator.
1662    uint64_t LHSScaledTrueCount = 0;
1663    if (TrueCount) {
1664      double LHSRatio =
1665          getProfileCount(CondOp) / (double)getCurrentProfileCount();
1666      LHSScaledTrueCount = TrueCount * LHSRatio;
1667    }
1668
1669    cond.begin(*this);
1670    EmitBlock(LHSBlock);
1671    incrementProfileCounter(CondOp);
1672    {
1673      ApplyDebugLocation DL(*thisCond);
1674      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlockFalseBlock,
1675                           LHSScaledTrueCount);
1676    }
1677    cond.end(*this);
1678
1679    cond.begin(*this);
1680    EmitBlock(RHSBlock);
1681    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlockFalseBlock,
1682                         TrueCount - LHSScaledTrueCount);
1683    cond.end(*this);
1684
1685    return;
1686  }
1687
1688  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1689    // Conditional operator handling can give us a throw expression as a
1690    // condition for a case like:
1691    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1692    // Fold this to:
1693    //   br(c, throw x, br(y, t, f))
1694    EmitCXXThrowExpr(Throw/*KeepInsertionPoint*/false);
1695    return;
1696  }
1697
1698  // If the branch has a condition wrapped by __builtin_unpredictable,
1699  // create metadata that specifies that the branch is unpredictable.
1700  // Don't bother if not optimizing because that metadata would not be used.
1701  llvm::MDNode *Unpredictable = nullptr;
1702  auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1703  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1704    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1705    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1706      llvm::MDBuilder MDHelper(getLLVMContext());
1707      Unpredictable = MDHelper.createUnpredictable();
1708    }
1709  }
1710
1711  // Create branch weights based on the number of times we get here and the
1712  // number of times the condition should be true.
1713  uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1714  llvm::MDNode *Weights =
1715      createProfileWeights(TrueCountCurrentCount - TrueCount);
1716
1717  // Emit the code with the fully general case.
1718  llvm::Value *CondV;
1719  {
1720    ApplyDebugLocation DL(*thisCond);
1721    CondV = EvaluateExprAsBool(Cond);
1722  }
1723  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1724}
1725
1726/// ErrorUnsupported - Print out an error that codegen doesn't support the
1727/// specified stmt yet.
1728void CodeGenFunction::ErrorUnsupported(const Stmt *Sconst char *Type) {
1729  CGM.ErrorUnsupported(SType);
1730}
1731
1732/// emitNonZeroVLAInit - Emit the "zero" initialization of a
1733/// variable-length array whose elements have a non-zero bit-pattern.
1734///
1735/// \param baseType the inner-most element type of the array
1736/// \param src - a char* pointing to the bit-pattern for a single
1737/// base element of the array
1738/// \param sizeInChars - the total size of the VLA, in chars
1739static void emitNonZeroVLAInit(CodeGenFunction &CGFQualType baseType,
1740                               Address destAddress src,
1741                               llvm::Value *sizeInChars) {
1742  CGBuilderTy &Builder = CGF.Builder;
1743
1744  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1745  llvm::Value *baseSizeInChars
1746    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1747
1748  Address begin =
1749    Builder.CreateElementBitCast(destCGF.Int8Ty"vla.begin");
1750  llvm::Value *end =
1751    Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars"vla.end");
1752
1753  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1754  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1755  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1756
1757  // Make a loop over the VLA.  C99 guarantees that the VLA element
1758  // count must be nonzero.
1759  CGF.EmitBlock(loopBB);
1760
1761  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2"vla.cur");
1762  cur->addIncoming(begin.getPointer(), originBB);
1763
1764  CharUnits curAlign =
1765    dest.getAlignment().alignmentOfArrayElement(baseSize);
1766
1767  // memcpy the individual element bit-pattern.
1768  Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1769                       /*volatile*/ false);
1770
1771  // Go to the next element.
1772  llvm::Value *next =
1773    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1774
1775  // Leave if that's the end of the VLA.
1776  llvm::Value *done = Builder.CreateICmpEQ(nextend"vla-init.isdone");
1777  Builder.CreateCondBr(donecontBBloopBB);
1778  cur->addIncoming(next, loopBB);
1779
1780  CGF.EmitBlock(contBB);
1781}
1782
1783void
1784CodeGenFunction::EmitNullInitialization(Address DestPtrQualType Ty) {
1785  // Ignore empty classes in C++.
1786  if (getLangOpts().CPlusPlus) {
1787    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1788      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1789        return;
1790    }
1791  }
1792
1793  // Cast the dest ptr to the appropriate i8 pointer type.
1794  if (DestPtr.getElementType() != Int8Ty)
1795    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1796
1797  // Get size and alignment info for this aggregate.
1798  CharUnits size = getContext().getTypeSizeInChars(Ty);
1799
1800  llvm::Value *SizeVal;
1801  const VariableArrayType *vla;
1802
1803  // Don't bother emitting a zero-byte memset.
1804  if (size.isZero()) {
1805    // But note that getTypeInfo returns 0 for a VLA.
1806    if (const VariableArrayType *vlaType =
1807          dyn_cast_or_null<VariableArrayType>(
1808                                          getContext().getAsArrayType(Ty))) {
1809      auto VlaSize = getVLASize(vlaType);
1810      SizeVal = VlaSize.NumElts;
1811      CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1812      if (!eltSize.isOne())
1813        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1814      vla = vlaType;
1815    } else {
1816      return;
1817    }
1818  } else {
1819    SizeVal = CGM.getSize(size);
1820    vla = nullptr;
1821  }
1822
1823  // If the type contains a pointer to data member we can't memset it to zero.
1824  // Instead, create a null constant and copy it to the destination.
1825  // TODO: there are other patterns besides zero that we can usefully memset,
1826  // like -1, which happens to be the pattern used by member-pointers.
1827  if (!CGM.getTypes().isZeroInitializable(Ty)) {
1828    // For a VLA, emit a single element, then splat that over the VLA.
1829    if (vlaTy = getContext().getBaseElementType(vla);
1830
1831    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1832
1833    llvm::GlobalVariable *NullVariable =
1834      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1835                               /*isConstant=*/true,
1836                               llvm::GlobalVariable::PrivateLinkage,
1837                               NullConstant, Twine());
1838    CharUnits NullAlign = DestPtr.getAlignment();
1839    NullVariable->setAlignment(NullAlign.getQuantity());
1840    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1841                   NullAlign);
1842
1843    if (vlareturn emitNonZeroVLAInit(*thisTyDestPtrSrcPtrSizeVal);
1844
1845    // Get and call the appropriate llvm.memcpy overload.
1846    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1847    return;
1848  }
1849
1850  // Otherwise, just memset the whole thing to zero.  This is legal
1851  // because in LLVM, all default initializers (other than the ones we just
1852  // handled above) are guaranteed to have a bit pattern of all zeros.
1853  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1854}
1855
1856llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1857  // Make sure that there is a block for the indirect goto.
1858  if (!IndirectBranch)
1859    GetIndirectGotoBlock();
1860
1861  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1862
1863  // Make sure the indirect branch includes all of the address-taken blocks.
1864  IndirectBranch->addDestination(BB);
1865  return llvm::BlockAddress::get(CurFn, BB);
1866}
1867
1868llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1869  // If we already made the indirect branch for indirect goto, return its block.
1870  if (IndirectBranch) return IndirectBranch->getParent();
1871
1872  CGBuilderTy TmpBuilder(*thiscreateBasicBlock("indirectgoto"));
1873
1874  // Create the PHI node that indirect gotos will add entries to.
1875  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy0,
1876                                              "indirect.goto.dest");
1877
1878  // Create the indirect branch instruction.
1879  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1880  return IndirectBranch->getParent();
1881}
1882
1883/// Computes the length of an array in elements, as well as the base
1884/// element type and a properly-typed first element pointer.
1885llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1886                                              QualType &baseType,
1887                                              Address &addr) {
1888  const ArrayType *arrayType = origArrayType;
1889
1890  // If it's a VLA, we have to load the stored size.  Note that
1891  // this is the size of the VLA in bytes, not its size in elements.
1892  llvm::Value *numVLAElements = nullptr;
1893  if (isa<VariableArrayType>(arrayType)) {
1894    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1895
1896    // Walk into all VLAs.  This doesn't require changes to addr,
1897    // which has type T* where T is the first non-VLA element type.
1898    do {
1899      QualType elementType = arrayType->getElementType();
1900      arrayType = getContext().getAsArrayType(elementType);
1901
1902      // If we only have VLA components, 'addr' requires no adjustment.
1903      if (!arrayType) {
1904        baseType = elementType;
1905        return numVLAElements;
1906      }
1907    } while (isa<VariableArrayType>(arrayType));
1908
1909    // We get out here only if we find a constant array type
1910    // inside the VLA.
1911  }
1912
1913  // We have some number of constant-length arrays, so addr should
1914  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1915  // down to the first element of addr.
1916  SmallVector<llvm::Value*, 8gepIndices;
1917
1918  // GEP down to the array type.
1919  llvm::ConstantInt *zero = Builder.getInt32(0);
1920  gepIndices.push_back(zero);
1921
1922  uint64_t countFromCLAs = 1;
1923  QualType eltType;
1924
1925  llvm::ArrayType *llvmArrayType =
1926    dyn_cast<llvm::ArrayType>(addr.getElementType());
1927  while (llvmArrayType) {
1928    (arrayType)", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1928, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(isa<ConstantArrayType>(arrayType));
1929    (arrayType)->getSize().getZExtValue() == llvmArrayType->getNumElements()", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1930, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1930(arrayType)->getSize().getZExtValue() == llvmArrayType->getNumElements()", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1930, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">             == llvmArrayType->getNumElements());
1931
1932    gepIndices.push_back(zero);
1933    countFromCLAs *= llvmArrayType->getNumElements();
1934    eltType = arrayType->getElementType();
1935
1936    llvmArrayType =
1937      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1938    arrayType = getContext().getAsArrayType(arrayType->getElementType());
1939     (0) . __assert_fail ("(!llvmArrayType || arrayType) && \"LLVM and Clang types are out-of-synch\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1940, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert((!llvmArrayType || arrayType) &&
1940 (0) . __assert_fail ("(!llvmArrayType || arrayType) && \"LLVM and Clang types are out-of-synch\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1940, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">           "LLVM and Clang types are out-of-synch");
1941  }
1942
1943  if (arrayType) {
1944    // From this point onwards, the Clang array type has been emitted
1945    // as some other type (probably a packed struct). Compute the array
1946    // size, and just emit the 'begin' expression as a bitcast.
1947    while (arrayType) {
1948      countFromCLAs *=
1949          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1950      eltType = arrayType->getElementType();
1951      arrayType = getContext().getAsArrayType(eltType);
1952    }
1953
1954    llvm::Type *baseType = ConvertType(eltType);
1955    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1956  } else {
1957    // Create the actual GEP.
1958    addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1959                                             gepIndices, "array.begin"),
1960                   addr.getAlignment());
1961  }
1962
1963  baseType = eltType;
1964
1965  llvm::Value *numElements
1966    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1967
1968  // If we had any VLA dimensions, factor them in.
1969  if (numVLAElements)
1970    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1971
1972  return numElements;
1973}
1974
1975CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1976  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1977   (0) . __assert_fail ("vla && \"type was not a variable array type!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1977, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(vla && "type was not a variable array type!");
1978  return getVLASize(vla);
1979}
1980
1981CodeGenFunction::VlaSizePair
1982CodeGenFunction::getVLASize(const VariableArrayType *type) {
1983  // The number of elements so far; always size_t.
1984  llvm::Value *numElements = nullptr;
1985
1986  QualType elementType;
1987  do {
1988    elementType = type->getElementType();
1989    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1990     (0) . __assert_fail ("vlaSize && \"no size for VLA!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1990, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(vlaSize && "no size for VLA!");
1991    getType() == SizeTy", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 1991, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(vlaSize->getType() == SizeTy);
1992
1993    if (!numElements) {
1994      numElements = vlaSize;
1995    } else {
1996      // It's undefined behavior if this wraps around, so mark it that way.
1997      // FIXME: Teach -fsanitize=undefined to trap this.
1998      numElements = Builder.CreateNUWMul(numElements, vlaSize);
1999    }
2000  } while ((type = getContext().getAsVariableArrayType(elementType)));
2001
2002  return { numElementselementType };
2003}
2004
2005CodeGenFunction::VlaSizePair
2006CodeGenFunction::getVLAElements1D(QualType type) {
2007  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2008   (0) . __assert_fail ("vla && \"type was not a variable array type!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2008, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(vla && "type was not a variable array type!");
2009  return getVLAElements1D(vla);
2010}
2011
2012CodeGenFunction::VlaSizePair
2013CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2014  llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2015   (0) . __assert_fail ("VlaSize && \"no size for VLA!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2015, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(VlaSize && "no size for VLA!");
2016  getType() == SizeTy", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2016, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(VlaSize->getType() == SizeTy);
2017  return { VlaSizeVla->getElementType() };
2018}
2019
2020void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2021   (0) . __assert_fail ("type->isVariablyModifiedType() && \"Must pass variably modified type to EmitVLASizes!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2022, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(type->isVariablyModifiedType() &&
2022 (0) . __assert_fail ("type->isVariablyModifiedType() && \"Must pass variably modified type to EmitVLASizes!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2022, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Must pass variably modified type to EmitVLASizes!");
2023
2024  EnsureInsertPoint();
2025
2026  // We're going to walk down into the type and look for VLA
2027  // expressions.
2028  do {
2029    isVariablyModifiedType()", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2029, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(type->isVariablyModifiedType());
2030
2031    const Type *ty = type.getTypePtr();
2032    switch (ty->getTypeClass()) {
2033
2034#define TYPE(Class, Base)
2035#define ABSTRACT_TYPE(Class, Base)
2036#define NON_CANONICAL_TYPE(Class, Base)
2037#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2038#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2039#include "clang/AST/TypeNodes.def"
2040      llvm_unreachable("unexpected dependent type!");
2041
2042    // These types are never variably-modified.
2043    case Type::Builtin:
2044    case Type::Complex:
2045    case Type::Vector:
2046    case Type::ExtVector:
2047    case Type::Record:
2048    case Type::Enum:
2049    case Type::Elaborated:
2050    case Type::TemplateSpecialization:
2051    case Type::ObjCTypeParam:
2052    case Type::ObjCObject:
2053    case Type::ObjCInterface:
2054    case Type::ObjCObjectPointer:
2055      llvm_unreachable("type class is never variably-modified!");
2056
2057    case Type::Adjusted:
2058      type = cast<AdjustedType>(ty)->getAdjustedType();
2059      break;
2060
2061    case Type::Decayed:
2062      type = cast<DecayedType>(ty)->getPointeeType();
2063      break;
2064
2065    case Type::Pointer:
2066      type = cast<PointerType>(ty)->getPointeeType();
2067      break;
2068
2069    case Type::BlockPointer:
2070      type = cast<BlockPointerType>(ty)->getPointeeType();
2071      break;
2072
2073    case Type::LValueReference:
2074    case Type::RValueReference:
2075      type = cast<ReferenceType>(ty)->getPointeeType();
2076      break;
2077
2078    case Type::MemberPointer:
2079      type = cast<MemberPointerType>(ty)->getPointeeType();
2080      break;
2081
2082    case Type::ConstantArray:
2083    case Type::IncompleteArray:
2084      // Losing element qualification here is fine.
2085      type = cast<ArrayType>(ty)->getElementType();
2086      break;
2087
2088    case Type::VariableArray: {
2089      // Losing element qualification here is fine.
2090      const VariableArrayType *vat = cast<VariableArrayType>(ty);
2091
2092      // Unknown size indication requires no size computation.
2093      // Otherwise, evaluate and record it.
2094      if (const Expr *size = vat->getSizeExpr()) {
2095        // It's possible that we might have emitted this already,
2096        // e.g. with a typedef and a pointer to it.
2097        llvm::Value *&entry = VLASizeMap[size];
2098        if (!entry) {
2099          llvm::Value *Size = EmitScalarExpr(size);
2100
2101          // C11 6.7.6.2p5:
2102          //   If the size is an expression that is not an integer constant
2103          //   expression [...] each time it is evaluated it shall have a value
2104          //   greater than zero.
2105          if (SanOpts.has(SanitizerKind::VLABound) &&
2106              size->getType()->isSignedIntegerType()) {
2107            SanitizerScope SanScope(this);
2108            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2109            llvm::Constant *StaticArgs[] = {
2110                EmitCheckSourceLocation(size->getBeginLoc()),
2111                EmitCheckTypeDescriptor(size->getType())};
2112            EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2113                                     SanitizerKind::VLABound),
2114                      SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2115          }
2116
2117          // Always zexting here would be wrong if it weren't
2118          // undefined behavior to have a negative bound.
2119          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2120        }
2121      }
2122      type = vat->getElementType();
2123      break;
2124    }
2125
2126    case Type::FunctionProto:
2127    case Type::FunctionNoProto:
2128      type = cast<FunctionType>(ty)->getReturnType();
2129      break;
2130
2131    case Type::Paren:
2132    case Type::TypeOf:
2133    case Type::UnaryTransform:
2134    case Type::Attributed:
2135    case Type::SubstTemplateTypeParm:
2136    case Type::PackExpansion:
2137      // Keep walking after single level desugaring.
2138      type = type.getSingleStepDesugaredType(getContext());
2139      break;
2140
2141    case Type::Typedef:
2142    case Type::Decltype:
2143    case Type::Auto:
2144    case Type::DeducedTemplateSpecialization:
2145      // Stop walking: nothing to do.
2146      return;
2147
2148    case Type::TypeOfExpr:
2149      // Stop walking: emit typeof expression.
2150      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2151      return;
2152
2153    case Type::Atomic:
2154      type = cast<AtomicType>(ty)->getValueType();
2155      break;
2156
2157    case Type::Pipe:
2158      type = cast<PipeType>(ty)->getElementType();
2159      break;
2160    }
2161  } while (type->isVariablyModifiedType());
2162}
2163
2164Address CodeGenFunction::EmitVAListRef(const ExprE) {
2165  if (getContext().getBuiltinVaListType()->isArrayType())
2166    return EmitPointerWithAlignment(E);
2167  return EmitLValue(E).getAddress();
2168}
2169
2170Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2171  return EmitLValue(E).getAddress();
2172}
2173
2174void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2175                                              const APValue &Init) {
2176   (0) . __assert_fail ("!Init.isUninit() && \"Invalid DeclRefExpr initializer!\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2176, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2177  if (CGDebugInfo *Dbg = getDebugInfo())
2178    if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2179      Dbg->EmitGlobalVariable(E->getDecl(), Init);
2180}
2181
2182CodeGenFunction::PeepholeProtection
2183CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2184  // At the moment, the only aggressive peephole we do in IR gen
2185  // is trunc(zext) folding, but if we add more, we can easily
2186  // extend this protection.
2187
2188  if (!rvalue.isScalar()) return PeepholeProtection();
2189  llvm::Value *value = rvalue.getScalarVal();
2190  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2191
2192  // Just make an extra bitcast.
2193  assert(HaveInsertPoint());
2194  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2195                                                  Builder.GetInsertBlock());
2196
2197  PeepholeProtection protection;
2198  protection.Inst = inst;
2199  return protection;
2200}
2201
2202void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2203  if (!protection.Instreturn;
2204
2205  // In theory, we could try to duplicate the peepholes now, but whatever.
2206  protection.Inst->eraseFromParent();
2207}
2208
2209void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2210                                              QualType TySourceLocation Loc,
2211                                              SourceLocation AssumptionLoc,
2212                                              llvm::Value *Alignment,
2213                                              llvm::Value *OffsetValue) {
2214  llvm::Value *TheCheck;
2215  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2216      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2217  if (SanOpts.has(SanitizerKind::Alignment)) {
2218    EmitAlignmentAssumptionCheck(PtrValueTyLocAssumptionLocAlignment,
2219                                 OffsetValueTheCheckAssumption);
2220  }
2221}
2222
2223void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2224                                              QualType TySourceLocation Loc,
2225                                              SourceLocation AssumptionLoc,
2226                                              unsigned Alignment,
2227                                              llvm::Value *OffsetValue) {
2228  llvm::Value *TheCheck;
2229  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2230      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2231  if (SanOpts.has(SanitizerKind::Alignment)) {
2232    llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2233    EmitAlignmentAssumptionCheck(PtrValueTyLocAssumptionLocAlignmentVal,
2234                                 OffsetValueTheCheckAssumption);
2235  }
2236}
2237
2238void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2239                                              const Expr *E,
2240                                              SourceLocation AssumptionLoc,
2241                                              unsigned Alignment,
2242                                              llvm::Value *OffsetValue) {
2243  if (auto *CE = dyn_cast<CastExpr>(E))
2244    E = CE->getSubExprAsWritten();
2245  QualType Ty = E->getType();
2246  SourceLocation Loc = E->getExprLoc();
2247
2248  EmitAlignmentAssumption(PtrValueTyLocAssumptionLocAlignment,
2249                          OffsetValue);
2250}
2251
2252llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2253                                                 llvm::Value *AnnotatedVal,
2254                                                 StringRef AnnotationStr,
2255                                                 SourceLocation Location) {
2256  llvm::Value *Args[4] = {
2257    AnnotatedVal,
2258    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2259    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2260    CGM.EmitAnnotationLineNo(Location)
2261  };
2262  return Builder.CreateCall(AnnotationFn, Args);
2263}
2264
2265void CodeGenFunction::EmitVarAnnotations(const VarDecl *Dllvm::Value *V) {
2266   (0) . __assert_fail ("D->hasAttr() && \"no annotate attribute\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2266, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2267  // FIXME We create a new bitcast for every annotation because that's what
2268  // llvm-gcc was doing.
2269  for (const auto *I : D->specific_attrs<AnnotateAttr>())
2270    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2271                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2272                       I->getAnnotation(), D->getLocation());
2273}
2274
2275Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2276                                              Address Addr) {
2277   (0) . __assert_fail ("D->hasAttr() && \"no annotate attribute\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2277, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2278  llvm::Value *V = Addr.getPointer();
2279  llvm::Type *VTy = V->getType();
2280  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2281                                    CGM.Int8PtrTy);
2282
2283  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2284    // FIXME Always emit the cast inst so we can differentiate between
2285    // annotation on the first field of a struct and annotation on the struct
2286    // itself.
2287    if (VTy != CGM.Int8PtrTy)
2288      V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2289    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2290    V = Builder.CreateBitCast(V, VTy);
2291  }
2292
2293  return Address(VAddr.getAlignment());
2294}
2295
2296CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2297
2298CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2299    : CGF(CGF) {
2300  IsSanitizerScope", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2300, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(!CGF->IsSanitizerScope);
2301  CGF->IsSanitizerScope = true;
2302}
2303
2304CodeGenFunction::SanitizerScope::~SanitizerScope() {
2305  CGF->IsSanitizerScope = false;
2306}
2307
2308void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2309                                   const llvm::Twine &Name,
2310                                   llvm::BasicBlock *BB,
2311                                   llvm::BasicBlock::iterator InsertPtconst {
2312  LoopStack.InsertHelper(I);
2313  if (IsSanitizerScope)
2314    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2315}
2316
2317void CGBuilderInserter::InsertHelper(
2318    llvm::Instruction *Iconst llvm::Twine &Namellvm::BasicBlock *BB,
2319    llvm::BasicBlock::iterator InsertPtconst {
2320  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2321  if (CGF)
2322    CGF->InsertHelper(I, Name, BB, InsertPt);
2323}
2324
2325static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2326                                CodeGenModule &CGMconst FunctionDecl *FD,
2327                                std::string &FirstMissing) {
2328  // If there aren't any required features listed then go ahead and return.
2329  if (ReqFeatures.empty())
2330    return false;
2331
2332  // Now build up the set of caller features and verify that all the required
2333  // features are there.
2334  llvm::StringMap<bool> CallerFeatureMap;
2335  CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2336
2337  // If we have at least one of the features in the feature list return
2338  // true, otherwise return false.
2339  return std::all_of(
2340      ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2341        SmallVector<StringRef, 1> OrFeatures;
2342        Feature.split(OrFeatures, '|');
2343        return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2344          if (!CallerFeatureMap.lookup(Feature)) {
2345            FirstMissing = Feature.str();
2346            return false;
2347          }
2348          return true;
2349        });
2350      });
2351}
2352
2353// Emits an error if we don't have a valid set of target features for the
2354// called function.
2355void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2356                                          const FunctionDecl *TargetDecl) {
2357  // Early exit if this is an indirect call.
2358  if (!TargetDecl)
2359    return;
2360
2361  // Get the current enclosing function if it exists. If it doesn't
2362  // we can't check the target features anyhow.
2363  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2364  if (!FD)
2365    return;
2366
2367  // Grab the required features for the call. For a builtin this is listed in
2368  // the td file with the default cpu, for an always_inline function this is any
2369  // listed cpu and any listed features.
2370  unsigned BuiltinID = TargetDecl->getBuiltinID();
2371  std::string MissingFeature;
2372  if (BuiltinID) {
2373    SmallVector<StringRef1ReqFeatures;
2374    const char *FeatureList =
2375        CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2376    // Return if the builtin doesn't have any required features.
2377    if (!FeatureList || StringRef(FeatureList) == "")
2378      return;
2379    StringRef(FeatureList).split(ReqFeatures, ',');
2380    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2381      CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2382          << TargetDecl->getDeclName()
2383          << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2384
2385  } else if (TargetDecl->hasAttr<TargetAttr>() ||
2386             TargetDecl->hasAttr<CPUSpecificAttr>()) {
2387    // Get the required features for the callee.
2388
2389    const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2390    TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2391
2392    SmallVector<StringRef1ReqFeatures;
2393    llvm::StringMap<bool> CalleeFeatureMap;
2394    CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2395
2396    for (const auto &F : ParsedAttr.Features) {
2397      if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2398        ReqFeatures.push_back(StringRef(F).substr(1));
2399    }
2400
2401    for (const auto &F : CalleeFeatureMap) {
2402      // Only positive features are "required".
2403      if (F.getValue())
2404        ReqFeatures.push_back(F.getKey());
2405    }
2406    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2407      CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2408          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2409  }
2410}
2411
2412void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2413  if (!CGM.getCodeGenOpts().SanitizeStats)
2414    return;
2415
2416  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2417  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2418  CGM.getSanStats().create(IRB, SSK);
2419}
2420
2421llvm::Value *
2422CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2423  llvm::Value *Condition = nullptr;
2424
2425  if (!RO.Conditions.Architecture.empty())
2426    Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2427
2428  if (!RO.Conditions.Features.empty()) {
2429    llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2430    Condition =
2431        Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2432  }
2433  return Condition;
2434}
2435
2436static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2437                                             llvm::Function *Resolver,
2438                                             CGBuilderTy &Builder,
2439                                             llvm::Function *FuncToReturn,
2440                                             bool SupportsIFunc) {
2441  if (SupportsIFunc) {
2442    Builder.CreateRet(FuncToReturn);
2443    return;
2444  }
2445
2446  llvm::SmallVector<llvm::Value *, 10Args;
2447  llvm::for_each(Resolver->args(),
2448                 [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2449
2450  llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2451  Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2452
2453  if (Resolver->getReturnType()->isVoidTy())
2454    Builder.CreateRetVoid();
2455  else
2456    Builder.CreateRet(Result);
2457}
2458
2459void CodeGenFunction::EmitMultiVersionResolver(
2460    llvm::Function *ResolverArrayRef<MultiVersionResolverOptionOptions) {
2461   (0) . __assert_fail ("(getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86 || getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86_64) && \"Only implemented for x86 targets\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2465, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert((getContext().getTargetInfo().getTriple().getArch() ==
2462 (0) . __assert_fail ("(getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86 || getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86_64) && \"Only implemented for x86 targets\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2465, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">              llvm::Triple::x86 ||
2463 (0) . __assert_fail ("(getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86 || getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86_64) && \"Only implemented for x86 targets\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2465, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">          getContext().getTargetInfo().getTriple().getArch() ==
2464 (0) . __assert_fail ("(getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86 || getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86_64) && \"Only implemented for x86 targets\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2465, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">              llvm::Triple::x86_64) &&
2465 (0) . __assert_fail ("(getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86 || getContext().getTargetInfo().getTriple().getArch() == llvm..Triple..x86_64) && \"Only implemented for x86 targets\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2465, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Only implemented for x86 targets");
2466
2467  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2468
2469  // Main function's basic block.
2470  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry"Resolver);
2471  Builder.SetInsertPoint(CurBlock);
2472  EmitX86CpuInit();
2473
2474  for (const MultiVersionResolverOption &RO : Options) {
2475    Builder.SetInsertPoint(CurBlock);
2476    llvm::Value *Condition = FormResolverCondition(RO);
2477
2478    // The 'default' or 'generic' case.
2479    if (!Condition) {
2480       (0) . __assert_fail ("&RO == Options.end() - 1 && \"Default or Generic case must be last\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2481, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(&RO == Options.end() - 1 &&
2481 (0) . __assert_fail ("&RO == Options.end() - 1 && \"Default or Generic case must be last\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2481, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">             "Default or Generic case must be last");
2482      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2483                                       SupportsIFunc);
2484      return;
2485    }
2486
2487    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2488    CGBuilderTy RetBuilder(*this, RetBlock);
2489    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2490                                     SupportsIFunc);
2491    CurBlock = createBasicBlock("resolver_else", Resolver);
2492    Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2493  }
2494
2495  // If no generic/default, emit an unreachable.
2496  Builder.SetInsertPoint(CurBlock);
2497  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2498  TrapCall->setDoesNotReturn();
2499  TrapCall->setDoesNotThrow();
2500  Builder.CreateUnreachable();
2501  Builder.ClearInsertionPoint();
2502}
2503
2504// Loc - where the diagnostic will point, where in the source code this
2505//  alignment has failed.
2506// SecondaryLoc - if present (will be present if sufficiently different from
2507//  Loc), the diagnostic will additionally point a "Note:" to this location.
2508//  It should be the location where the __attribute__((assume_aligned))
2509//  was written e.g.
2510void CodeGenFunction::EmitAlignmentAssumptionCheck(
2511    llvm::Value *PtrQualType TySourceLocation Loc,
2512    SourceLocation SecondaryLocllvm::Value *Alignment,
2513    llvm::Value *OffsetValuellvm::Value *TheCheck,
2514    llvm::Instruction *Assumption) {
2515   (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2516 (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2517 (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">             llvm::Intrinsic::getDeclaration(
2518 (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">                 Builder.GetInsertBlock()->getParent()->getParent(),
2519 (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">                 llvm::Intrinsic::assume) &&
2520 (0) . __assert_fail ("Assumption && isa(Assumption) && cast(Assumption)->getCalledValue() == llvm..Intrinsic..getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm..Intrinsic..assume) && \"Assumption should be a call to llvm.assume().\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2520, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Assumption should be a call to llvm.assume().");
2521   (0) . __assert_fail ("&(Builder.GetInsertBlock()->back()) == Assumption && \"Assumption should be the last instruction of the basic block, \" \"since the basic block is still being generated.\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2523, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2522 (0) . __assert_fail ("&(Builder.GetInsertBlock()->back()) == Assumption && \"Assumption should be the last instruction of the basic block, \" \"since the basic block is still being generated.\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2523, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "Assumption should be the last instruction of the basic block, "
2523 (0) . __assert_fail ("&(Builder.GetInsertBlock()->back()) == Assumption && \"Assumption should be the last instruction of the basic block, \" \"since the basic block is still being generated.\"", "/home/seafit/code_projects/clang_source/clang/lib/CodeGen/CodeGenFunction.cpp", 2523, __PRETTY_FUNCTION__))" file_link="../../../include/assert.h.html#88" macro="true">         "since the basic block is still being generated.");
2524
2525  if (!SanOpts.has(SanitizerKind::Alignment))
2526    return;
2527
2528  // Don't check pointers to volatile data. The behavior here is implementation-
2529  // defined.
2530  if (Ty->getPointeeType().isVolatileQualified())
2531    return;
2532
2533  // We need to temorairly remove the assumption so we can insert the
2534  // sanitizer check before it, else the check will be dropped by optimizations.
2535  Assumption->removeFromParent();
2536
2537  {
2538    SanitizerScope SanScope(this);
2539
2540    if (!OffsetValue)
2541      OffsetValue = Builder.getInt1(0); // no offset.
2542
2543    llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2544                                    EmitCheckSourceLocation(SecondaryLoc),
2545                                    EmitCheckTypeDescriptor(Ty)};
2546    llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2547                                  EmitCheckValue(Alignment),
2548                                  EmitCheckValue(OffsetValue)};
2549    EmitCheck({std::make_pair(TheCheckSanitizerKind::Alignment)},
2550              SanitizerHandler::AlignmentAssumptionStaticDataDynamicData);
2551  }
2552
2553  // We are now in the (new, empty) "cont" basic block.
2554  // Reintroduce the assumption.
2555  Builder.Insert(Assumption);
2556  // FIXME: Assumption still has it's original basic block as it's Parent.
2557}
2558
2559llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2560  if (CGDebugInfo *DI = getDebugInfo())
2561    return DI->SourceLocToDebugLoc(Location);
2562
2563  return llvm::DebugLoc();
2564}
2565
clang::CodeGen::CodeGenFunction::getNaturalPointeeTypeAlignment
clang::CodeGen::CodeGenFunction::getNaturalTypeAlignment
clang::CodeGen::CodeGenFunction::MakeNaturalAlignAddrLValue
clang::CodeGen::CodeGenFunction::MakeNaturalAlignPointeeAddrLValue
clang::CodeGen::CodeGenFunction::ConvertTypeForMem
clang::CodeGen::CodeGenFunction::ConvertType
clang::CodeGen::CodeGenFunction::getEvaluationKind
clang::CodeGen::CodeGenFunction::EmitReturnBlock
clang::CodeGen::CodeGenFunction::FinishFunction
clang::CodeGen::CodeGenFunction::ShouldInstrumentFunction
clang::CodeGen::CodeGenFunction::ShouldXRayInstrumentFunction
clang::CodeGen::CodeGenFunction::AlwaysEmitXRayCustomEvents
clang::CodeGen::CodeGenFunction::AlwaysEmitXRayTypedEvents
clang::CodeGen::CodeGenFunction::EncodeAddrForUseInPrologue
clang::CodeGen::CodeGenFunction::DecodeAddrUsedInPrologue
clang::CodeGen::CodeGenFunction::EmitOpenCLKernelMetadata
clang::CodeGen::CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime
clang::CodeGen::CodeGenFunction::StartFunction
clang::CodeGen::CodeGenFunction::EmitFunctionBody
clang::CodeGen::CodeGenFunction::EmitBlockWithFallThrough
clang::CodeGen::CodeGenFunction::BuildFunctionArgList
clang::CodeGen::CodeGenFunction::GenerateCode
clang::CodeGen::CodeGenFunction::ContainsLabel
clang::CodeGen::CodeGenFunction::containsBreak
clang::CodeGen::CodeGenFunction::mightAddDeclToScope
clang::CodeGen::CodeGenFunction::ConstantFoldsToSimpleInteger
clang::CodeGen::CodeGenFunction::ConstantFoldsToSimpleInteger
clang::CodeGen::CodeGenFunction::EmitBranchOnBoolExpr
clang::CodeGen::CodeGenFunction::ErrorUnsupported
clang::CodeGen::CodeGenFunction::EmitNullInitialization
clang::CodeGen::CodeGenFunction::GetAddrOfLabel
clang::CodeGen::CodeGenFunction::GetIndirectGotoBlock
clang::CodeGen::CodeGenFunction::emitArrayLength
clang::CodeGen::CodeGenFunction::getVLASize
clang::CodeGen::CodeGenFunction::getVLASize
clang::CodeGen::CodeGenFunction::getVLAElements1D
clang::CodeGen::CodeGenFunction::getVLAElements1D
clang::CodeGen::CodeGenFunction::EmitVariablyModifiedType
clang::CodeGen::CodeGenFunction::EmitVAListRef
clang::CodeGen::CodeGenFunction::EmitMSVAListRef
clang::CodeGen::CodeGenFunction::EmitDeclRefExprDbgValue
clang::CodeGen::CodeGenFunction::protectFromPeepholes
clang::CodeGen::CodeGenFunction::unprotectFromPeepholes
clang::CodeGen::CodeGenFunction::EmitAlignmentAssumption
clang::CodeGen::CodeGenFunction::EmitAlignmentAssumption
clang::CodeGen::CodeGenFunction::EmitAlignmentAssumption
clang::CodeGen::CodeGenFunction::EmitAnnotationCall
clang::CodeGen::CodeGenFunction::EmitVarAnnotations
clang::CodeGen::CodeGenFunction::EmitFieldAnnotations
clang::CodeGen::CodeGenFunction::InsertHelper
clang::CodeGen::CGBuilderInserter::InsertHelper
clang::CodeGen::CodeGenFunction::checkTargetFeatures
clang::CodeGen::CodeGenFunction::EmitSanitizerStatReport
clang::CodeGen::CodeGenFunction::FormResolverCondition
clang::CodeGen::CodeGenFunction::EmitMultiVersionResolver
clang::CodeGen::CodeGenFunction::EmitAlignmentAssumptionCheck
clang::CodeGen::CodeGenFunction::SourceLocToDebugLoc